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PRECIS

Introduction

Acoustical radiation, diffraction, and scattering problems have

been treated using a variety of analytical techniques. However, none of

the present techniques are capable of providing solutions to all of the

problems that are of theoretical and practical significance. For this

reason, it is important to examine new approaches to the solution of such

problems. It is particularly important to examine those new approaches

that may prove of value in solving whole classes of problems that one

cannot now treat by means of conventional methods.

One such alternative approach, which can be used to attack general

problems arising in the study of acoustical radiation phenomena, is based

upon the Rubinowicz-Maggi formulation of diffraction theory. In the

Rubinowicz-Maggi formulation, the radiated field of an acoustic source is

envisioned as being comprised of components of two types. First, there

is a geometrical field component. This is a wavefield with spatially

discontinuous wavefronts whose shape conforms to the shape of the

radiating surface of the source. Second, there are one or more boundary-

diffraction-wave field components that are radiated by the edges of the

sourcels surface. Radiation associated with such boundary-diffraction-

wave components may often be localized to particular points on the edges

of the source's radiating surface. Boundary-diffraction-wave components,

like the geometrical component, are spatially discontinuous, but their

discontinuities are such that they exactly compensate for the discontinuity

in the geometrical component. Thus, the source's total radiated field,

consisting of the superposition of the geometrical and boundary-

diffraction-wave components, is continuous everywhere.

This picture of the structure of radiation fields that results

from the Rubinowicz-Maggi formulation has, potentially, important

vii
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consequences from both a theoretical and a practical standpoint. On the
theoretical side, the radiation of particular field components can be
associated with definite geometrical features of the radiating source.
Thus, the shape and nature of an acoustic source's edge, as much as the
shape and curvature of its radiating surface, determines the structure of
its radiated field. This being the case, it is conceivable, on the basis
of tne Rubinowicz-Maggi theory, that one can eventually theoretically
predict the acoustic field radiated by a source of arbitrary shape, once
a geometrical description of the source is given. An enhanced ability
to design acoustic sources, receivers, and scatterers would be the
practical result of this new theoretical understanding.

While the theoretical basis for the Rubinowicz-Haggi formulation

is reasonably well-established, there is at present very little experi-

mental work either supporting or refuting it. This holds true, not only

in the field of acoustics, but in optics as well. The aim of the work

reported in this dissertation is to provide definitive experimental con-

firmation for the Rubinowicz-Maggi theory by performing laboratory

experiments in which the field structure of a sound-radiating source is

investigated. It is shown here that the features of the source's radiated

field that are experimentally observed are precisely those that are

theoretically predicted on the basis of the concepts of the Rubinowicz-

Maggi formulation of diffraction and radiation theory. The acoustic

radiator whose field is investigated is a line source of finite length.

The radiated field of this source is described by the spatial impulse

response function, which expresses the field of the finite line source

in the time domain rather than in the frequency domain. In addition to

designing and implementing a laboratory experiment to measure the spatial

impulse response function of a finite-line acoustic source, it is also

necessary to develop a suitable theoretical expression for the field of

such a source, before experimental and theoretical results can be

compared.
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Background

The Rubinowicz-Maggi theory resulted from the study of optical

diffraction phenomena. Many of the concepts embodied in the Rubinowicz-

Maggi theory can be traced to the formulation of diffraction theory

advanced by Thomas Young early in the nineteenth century. Young's

formulation, however, seemed at the time to have certain shortcomings

that led to its rejection and to its replacement by a formulation of

diffraction theory that is based upon the ideas of Fresnel and of

Kirchhoff. At the present time, the conventional theory of acoustic

radiation rests upon this latter formulation of diffraction theory.

However, throughout the long history of diffraction theory, investigators

of optical diffraction phenomena have continually returned to Young's

concepts. In particular, Sommerfeld's exact treatment of the problem of

diffraction of a plane electromagnetic wave by a perfectly reflecting

half-plane suggested that a diffracting edge acts as a directional

source of waves. These diffraction waves appear to interfere with the

incident light in the half-plane's directly illuminated region and to

radiate into the region of its geometrical shadow.

Sommerfeld's work led Rubinowicz to reformulate Kirchhoff's

theory of scalar-wave diffraction. Rubinowicz was able to express the

diffracted field of an edge or an aperture as the superposition of a

geometrical wave field and a boundary-diffraction-wave field. In the

Rubinowicz formulation, the boundary-diffraction-wave field can be

expressed in terms of a line integral taken along the edge of the

diffracting object. This is in contrast to the results of the usual

formulation of diffraction theory in which the diffracted field, which

is not separated from the geometrical field, is expressed as a surface

integral taken over that portion of an incident wavefront that is not

obstructed by the diffracting object. By pointing out how the line-

integral expressions for the boundary-diffraction-wave fields could be

evaluated by an asymptotic technique, Rubinowicz showed that the

radiation of boundary diffraction waves by the edge of a diffracting body
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can be localized to small regions in the vicinity of active points.

Active points are those points on the diffracting edge that are defined

by extremum values of the optical path, passing through the diffracting

edge, that connects the source point to the observation point in question.

The Rubinowicz-Maggi theory was applied to the study of acoustic

radiation phenomena by Schoch. Schoch obtained general expressions for

the radiated field of a finite planar piston source, which was located

in an infinite rigid baffle and which radiated into a fluid-filled half-

space. Schoch separated the fluid-filled region into two subregions by

means of a hypothetical cylindrical surface, normal to the plane of the

baffle, whose generating lines pass through the periphery of the radiating

piston. Within the semi-infinite cylinder defined by this hypothetical

surface, Schoch showed that the piston's radiated field is comprised of

two components. The first such component is a geometrical wave. This is

a finite plane wave with wavefronts parallel to the piston face. Since

these wavefronts terminate abruptly at the surface of the cylinder, the

geometrical wavefield propagates in a beam-like fashion away from the

piston face. There is also a boundary-diffraction-wave field component

within the cylindrical subregion that is directly in front of the piston.

This boundary-diffraction-wave component, which is radiated by the edge

of the piston, is expressed by a line integral taken along the piston's

edge4 The boundary-diffraction-wave component interferes with the geo-

metrical wave within the cylindrical subregion and also changes

discontinuously at the subregion's surface. Outside of the cylindrical

subregion, Schoch's analysis showed that there is no geometrical wave

component. Only a boundary-diffraction-wave component exists there,

which, like the boundary-diffraction-wave component within the cylindrical

surface, is expressed by a line integral taken along the edge of the

piston. Both the boundary-diffraction-wave component and the geometrical

component of the piston's radiated field change discontinuously as the

cylindrical boundary surface between the two subregions is crossed.

However, the piston's total radiated field, which is the superposition
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of these two components, remains continuous everywhere, owing to the fact

that the discontinuous change in the boundary-diffraction-wave component

exactly compensates for the discontinuous change in the geometrical wave

component.

Schoch's expressions for the boundary-diffraction-wave components

in the two subregions remain in the form of line integrals. Schoch does,

however, point out how it would be possible to evaluate these integrals

by an asymptotic procedure and to thereby obtain results analogous to

those obtained by Rubinowicz in the case of a light-diffracting aperture.

Because of the apparent difficulty, no one previously has carried out this

asymptotic evaluation of the boundary-diffraction-wave line integrals,

except in a few very restricted cases. Nevertheless, it proved possible

to perform this analysis in a straightforward fashion for the case of a

piston whose boundary is defined by a general, smooth, convex curve. The

results and their range of validity are reported in this dissertation.

The analysis presented, however, is both complex and lengthy. It requires

one to pay considerable attention to the details of the geometry of the

curve defining the piston's periphery. The expressions obtained for the

piston's radiated field, as a result of the analysis, are likewise lengthy.

They show, however, that there are localized active points on the piston's

periphery, the neighborhoods of which, radiate boundary diffraction waves

to an observation point. These active points are defined by extremum

values of the distance that separates an observation point from points on

the piston's boundary.

Using a Green's-function technique, one can also obtain a time-

domain expression for the radiated field of a planar piston. This result

of conventional radiation theory expresses the piston's field as a surface

integral taken over the radiating piston face. The surface-integral

expression gives no hint that the radiated field of the piston is a

composite comprised of geometrical and boundary-diffraction-wave components.
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Theory of the Finite Line Source

The line radiator of finite length is a far more suitable source

to use in laboratory acoustical experiments than is a planar piston in an

infinite rigid baffle. Presently, however, there is no closed-form

analytic expression for the radiated field of a finite line source in the

time domain. For this reason, it is necessary to derive such a result.

An expression for the spatial impulse response function of an

idealized line radiator with finite length is obtained by solving the

inhomogeneous wave equation. Owing to the symmetry of the line source,

this is essentially a two-dimensional problem, in which the wave equation

can be expressed in cylindrical coordinates. The solution to the wave

equation is obtained by using integral-transform techniques, but in order

to do so it is necessary to work with the wave equation for the acoustic

velocity-potential field rather than that for the acoustic pressure field.

The velocity potential must be transformed with respect to three variables.

A Rankel transform of order zero is taken with respect to the radial

cylindrical coordinate, an exponential Fourier transform is taken with

respect to the axial cylindrical coordinate, and a Laplace transform is

taken with respect to the time. Once an expression for the transformed

velocity potential is found, the three transforms can be inverted, through

use of results found in the Bateman tables, in order to obtain an ex-

pression for the line source's velocity-potential field in the time domain.

The expression for the velocity-potential field of the source is

differentiated with respect to time in order to obtain a corresponding

expression for the source's acoustic pressure field. However, since

the velocity potential is expressed in terms of generalized functions of

time and functions with temporal singularities, in order to correctly

perform the required differentiation, it is necessary to apply techniques

from the theory of distributions. The result of the analysis is the
following expression for the spatial impulse response of a finite line

source:
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p(r,z,t) =- 9[2 0(r, t) - *(r, 1 -z, t) - 4(r, 1-fZ- t)j, (Pla)

for - 1L -z 5L and

p~rzt) =_PQ 4 sgn(z)[f(r, jL-z, t) - 4(r, :L+z. t)], (Plb)

for I zI > -iL, where L is the length of the line source, r and z are,

respectively, the radial and axial cylindrical coordinates of the

observation point, and t is the time. The generalized function 4

appearing in Eqs. (PI) is the pseudofunction

u t -(r2 + L2)½/clt

r(rUt) 5 L s 2 - (r2 + 2) 2 1 3/2j (P2)

In Eq. (P2), u designates the unit step function and the sign function

sgn in Eq. (Plb) assumes the value -1 for z c 0 and 1 for z > 0. The

quantity Q in Eqs. (PI) is the source strength of the line radiator per

unit length. The line source is considered to be surrounded by a fluid

having density p and soundspeed c. The line source is situated on the z

axis of the cylindrical coordinate system and is symmetrically disposed

about the coordinate origin.

It is to be noted from Eqs. (PI) that the theoretical expression

for the spatial impulse response function of the finite line is of a

different form in each of two subregions of the fluid-filled medium

surrounding the source. These two subregions are defined by a pair of

hypothetical infinite planes, which are each normal to the line source

and which pass through its respective ends. In the subregion between

these two planes, the radiated pressure field, which is expressed by

Eq. (Pla), is a composite of three distinct components--a geometrical wave

component and two boundary-diffraction-wave components. The impulsive

geometrical wave, which is expressed by the term 2t(r, 0, t) in Eq. (Pla),

is a finite cylindrical wave concentric with the source, whose wavefronts

terminate abruptly at the two hypothetical planes. In this subregion
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also, impulsive boundary diffraction waves radiate from each end of the

line. These are given by the two terms of the form 'P(r, I-tz, t) in

Eq. (Pla). Both of the boundary diffraction waves have the same polarity,

or sense, which is opposite to the polarity of the geometrical wave in the

subregion between the hypothetical planes, so that in this subregion they

tend to interfere constructively with one another and destructively with

the geometrical wave.

In either of the two subregions outside one of the hypothetical

planes, only the two boundary diffraction waves, which are radiated by

the ends of the line, exist. This situation is described by Eq. (Plb>.

However, as an observation point passes across one such plane, the

boundary diffraction wave radiated from the end of the line through which

that plane passes changes discontinuously. The most conspicuous feature

of this discontinuous change is an abrupt change in the polarity of the

impulsive boundary diffraction wave. This change in polarity can be

noted from the opposite signs of ir, I t-:Z. t) and z(r , 2+z, t) in

Eq. (Plb). Thus outside either of the two hypothetical planes, the two

boundary diffraction waves, which are radiated from opposite ends of the

line, tend to interfere destructively with one another. The discontinuous

change in the boundary diffraction wave at the hypothetical plane again

just compensates for the discontinuous change in the cylindrical

geometrical wave, so that the line source's total pressure field again

remains continuous everywhere.

It is apparent that the structural features of the pressure

field radiated by a finite line source, as they are predicted on the basis
of the analysis that is developed, are analogous to those predicted for

a planar piston, according to Schoch's theory. Thus, for example, the

finite cylindrical wave in the case of the line radiator is the analog

of the finite plane wave that is the geometrical component of the

radiated field of a planar piston. Similarly, the components radiated

fron the ends of the finite line source are analogous to the field

component radiated by active points on a planar piston's periphery.

The line source's pressure field, as given by the spatial impulse response
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function is, however, expressed in closed form. The expression for this

field is exact, in contrast to the corresponding approximate expression

that one obtains for the spatial impulse response function of a piston,

owing to the introduction of the asymptotic method for evaluating line

integrals in this latter case. Moreover, also in contrast to the

expression obtained in the case of the piston, the expression for the

line source's spatial impulse response function is valid both far from

the source as well as near to it.

Since the theoretical spatial impulse response function of the

finite line source is expressed in terms of generalized functions that

contain singularities, it is necessary to obtain, in addition to the

theoretical result given by Eqs. (Fl), an analytical expression that is

everywhere finite so that theoretical predictions can be compared to

experimental results. Moreover, in this finite form of the source's

spatial impulse response function, it is also necessary to account for

a number of characteristics of the experimental system. It is found that

the important features of the theoretical spatial impulse response

function are those that significantly influence the result obtained when

the spatial impulse response function is convolved with another function.

Consequently, the singularities of the spatial impulse response function,

their relative weights, and their sequence of occurrence in time appear

to be the function's essential characteristics. The singularities of the

function can easily be represented by finite impulse functions with

their relative weights obtained directly from the theoretical analysis.

However, theoretical results are to be compared with the experimental

results obtained from a sampled-data measurement system. Therefore, the

theoretical spatial impulse response function must also be expressed as

a sampled temporal function. This fact introduces a difficulty in

representing the theoretical spatial impulse response function by means

of finite impulse functions of the usual type, since the experimental

sampling points do not coincide in time with the instant at which such

impulse functions occur. A method is devised, however, which allows one
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to correctly represent the impulse functions at an arbitrary instant
of time that does not correspond to an experimental sampling time. Use
of this method, which is based upon the five point Lagrange interpolation

formula, is an important factor in developing a theoretical representation

of the line source's spatial impulse response function that can be
compared to the results that are obtained experimentally.

Experimental Design

The spatial impulse response of an acoustic source is the acoustic

pressure signal resulting from a uniform particle-velocity distribution

on the radiating surface of the source, which has a time-variation that is
described by a 5-function. The spatial impulse response function of a

source is analogous to the usual temporal impulse response of a linear

system. However, the spatial impulse response function characterizes

the geometry of the source as it relates to the field that the source

radiates, rather than characterizing the internal nature of a linear

system, as does the usual temporal impulse response function. It is a

well-known result of the statistical theory of communication that the

temporal impulse response function of an arbitrary linear system can be

obtained by exciting the input of the system with a continuous white-noise

signal and crosscorrelating this input signal with the resulting output

signal from the linear system. This same input-output crosscorrelation

technique is applied to obtain the spatial impulse response of the

finite line source. One may do this since the line source and its

radiated field constitute a linear system.

Measurements are made of the spatial impulse response of a Type

F36 line transducer. The Type F36, which is designed to operate as a

source in the frequency range from 1 to 20 kfz, is a transducer currently

in widespread use in the field of underwater acoustics. The experiments

to measure the radiated field of this transducer were conducted in a large

water tank, using bursts of bandlimited pseudorandom white Gaussian

noise to excite the Type P36 electrically.
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Designing and building the unique experimental system that was

used to conduct the experiments confirming the Rubinowicz-Maggi radiation

theory was a major part of the work reported here. In this experimental

system, a large computer is coupled to both the input and the output of

the laboratory equipment. The computer is used at the input of the

laboratory system to generate, in digital form, the pseudorandom noise-

bursts that excite the Type F36 source transducer. A record of each such

digital noiseburst is first written on magnetic tape and then read into a

semiconductor memory that is part of the laboratory electronic equipment.

Under control of a digital timing system, the digital data residing in the
memory is transmitted sequentially at high speed to a digital-to-analog

converter unit. The resulting signal at the output of the digital-to-

analog converter unit is, after low-pass filtering, a time-varying

voltage that duplicates the waveform of the noiseburst originally generated

by the computer.

The output signal of the digital-to-analog converter unit is

supplied to the Type F36 source and the pressure signal that is radiated

by the source as a result of this excitation is measured with a small

hydrophone. The noiseburst signal at the output of the measuring hydro-

phone is then converted to digital form by a transient recorder and

written on punched paper tape. The output of the laboratory system is

digital paper-tape data records of this kind. These records are supplied

to the computer and used to calculate the input-output crosscorrelation

functions that define the spatial impulse response function of the Type F36

transducer.

Once the acoustic-measurement system was in operation, it was

found that two important experimental problems had to be dealt with.

The first of these problems concerns accounting for the fact that the
Type F36 transducer is not the ideal line source for which the theoretical

analysis is developed. The theoretical line source considered has a

vanishingly small extension in all directions normal to its length. It

is also considered to be excited so as to produce a uniform particle
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velocity everywhere on its surface, which has a time-variation that is

given by a &-function. In contrast to this situation, the Type F36

source consists of an array of seven endeapped ferroelectric shells of

finite diameter and is excited by applying an electrical signal, in the

form of a noiseburst, to it. Consequently, it is necessary to devise a

means to separate the purely geometrical effects, i.e., those characterized

by the source's spatial impulse response function, from those effects

introduced by the electromechanical behavior of the Type F36 when it is

excited by a broadband noiseburst.

Theoretical analysis of an equivalent-circuit representation of
a ferroelectric vibrating shell and preliminary experimental results

showed that two procedures are necessary in order to remove the effects

of the Type F36 transducer's electromechanical behavior from the measured

input-output crosscorrelation functions. First, before pseudorandom

noiseburst voltages are applied to the input of the Type F36, they must

be passed through a low-pass filter network that has a transfer character-

istic with a very large slope above the high-frequency cutoff. This type

of input-signal filtering is necessary in order to prevent excitation of

a multitude of high-frequency electromechanical resonances within the

Type F36. Second, for constant-voltage excitation of the input of the

Type F36 source, at frequencies well below the first electromechanical

resonance of one of the ferroelectric shells comprising the array in

Type F36, it is necessary to filter the measured input-output cross-

correlation functions in order to account for the mechanical compliance

of the ferroelectric shells. It is shown that this can be done by

convolving the measured input-output crosscorrelation functions with a
unit step function, which is chosen so as to have a step-height such that

the mean-squared value of each correlation function is the same after

convolution as it is before.

The second important experimental problem that must be dealt with

concerns the fact that the input-output correlation experiments are per-

formed using bursts of pseudorandom noise, which are bandlimited signals
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of finite duration and are not the ideal continuous white-noise signals

considered in the theory upon which the experimental design is based.

Moreover, all experimental signals must be represented in the computer in

sampled form. Also, the maximum duration of the experimental noisebursts

is dictated by the size of the water tank in which experiments are per-

formed. Under no circumstances can this duration be made much greater

than 4 ms for the tank used, and for most experimental geometries it is

less than 3 ms. A straightforward analysis shows that, from the input-

output correlation function of sampled, pseudorandom noisebursts, one can

obtain an estimate of the input-output crosscorrelation function that would

have been obtained, if the Type F36 had been excited by a continuous white-

noise signal. However, both experiment and theory point out that the

correlation function of a single pair of 3 ms or 4 ms noisebursts does

not provide an adequate estimate of this input-output correlation function,

owing to the short duration of the signal records. But this experimental

difficulty can be circumvented. It is shown theoretically and confirmed

experimentally that by averaging a number of the input-output cross-

correlation functions, which are obtained using the short experimental

noisebursts, one can obtain an input-output correlation function that is

equivalent to the function that would have been obtained if arbitrarily

long samples of continuous input and output signals had been cross-

correlated. This is a consequence of the fact that the pseudorandom

noisebursts, which are used as input signals in the experiments, simulate

samples of an ergodic stochastic process. That many short noisebursts

may be used to obtain the equivalent of an arbitrarily long noise record

is a significant result, since it demonstrates that one can conduct

acoustical experiments in a water tank, even though those experiments

require noise-signal record lengths much longer than the maximum duration

of the pulses that are compatible with the size of the tank.

Experimental Results

A small hydrophone measures the radiated field of the Type F36

source at 29 angular positions, all of which are at a distance of 1.3 m
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from the source's center. Orientations of the measuring hydrophone with

respect to the Type F36 line transducer are specified by the angle t.

When 0 is equal to 180 or to 00, the hydrophone is located on the

longitudinal axis of the Type F36, while when X is equal to 27Gb or to

90', the hydrophone is broadside to the source. At each angular position

h, the Type F36 is excited with a set of eight pseudorandom noiseburats.

Each exciting noiseburst has a 2.8 ms duration. A spatial-impulse-

response-function waveform is computed from the eight input-output

correlation functions obtained for each angular position. Representative

experimental spatial-impulse-response-function waveforms are reported and

discussed.

Before the experimental spatial-impulse-response-function waveforms

can be compared to those theoretically predicted, it is necessary to obtain

a value for the equivalent length of the Type F36 source. This value

cannot be obtained from a knowledge of the internal structure of the Type

F36, but rather must be obtained by experiment. The equivalent length of

the Type F36 source is determined by measuring the angular positions of

nulls in the directional response patterns that are obtained when the

Type F36 is excited by tonebursts at each of six different frequencies.

A modification of the experimental apparatus is necessary in order to be

able to generate the various tonebursts required in these measurements.

Once the equivalent length of the Type F36 is determined, its

value is used in the analytical expressions that are obtained from the

theoretical development. A computer is then used to construct theoretical

spatial-impulse-response-function waveforms. These are compared to the

corresponding experimental waveforms that are observed at a number of

different angular orientations of the source and receiver. A comparison

of the theoretical and experimental waveforms for 0 - 2300 and for

0 - 1200 is shown in Fig. P1. The agreement between the theoretical

predictions and the experimental results is seen to be excellent in these

two examples in spite of the quite different shape spatial-impulse-
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Fig. P1--A comparison of theoretical and experimental
spatial-impulse-response-function waveforms

response-function waveform in each of the two cases. Likewise, at

angular orientations for which the measuring receiver is not on or near

the longitudinal axis of the Type F36, the agreement between the theoretical

and the experimental spatial-impulse-response-function waveforms is

excellent in all of the other cases examined. In particular, it is found

that the theoretical and experimental waveforms are in close agreement

both inside the subregion defined by the two hypothetical planes passing

through the ends of the line and in the two symmetric subregions outside

these two planes. That is, the theoretical and experimental waveforms

agree both in the case where the total field of the Type F36 source is
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comprised of three components, namely, a finite cylindrical wave and a

pair of boundary diffraction waves, and in the case where the source's

total field is comprised of just the two boundary-diffraction-wave

components that are radiated by the ends of the line. From the experi-

mental results, one also notes that the Type F36 source's total field

remains continuous when the observation point moves across either of the

two hypothetical planes that define the subregions in the radiated field

of the source.

When the measuring receiver is located on or near the axis of the

Type F36, the theory correctly predicts the presence of the two boundary-

diffraction-wave components radiated by the ends of the line source and

correctly predicts their separation in time. It does not, however,

correctly predict the relative amplitudes of these two components that

one observes experimentally. This discrepancy between theory and

observation is attributed to the non-ideal nature of the Type F36. In

particular, it is considered to be due mainly to the effect of radiation

from the endcaps of the ferroelectric cylinders comprising the radiating

array within the Type F36. It is found that theory can be brought into

close agreement with experiment simply by reducing the amplitude of one of

the boundary-diffraction-wave components used to construct the theoretical

spatial-impulse-response-function waveforms in cases of axial or near-
axial source and receiver orientations. The fact that the discrepancy

between the theoretical and the experimental waveforms can be removed by

such a simple expedient lends support to the ideas embodied in the

Rubinowicz-Maggi theory, rather than casts doubt upon them, for one notes

that it is possible to modify the Rubinowicz-Maggi theory to account for

the non-ideal nature of the line source that is used in the experiments.

This modification can be effected only because it is possible to decompose

the radiated field of the source into the components predicted on the

basis of the Rubinowicz-Maggi theory. If, on the other hand, one had a

theoretical spatial-impulse-response-function waveform of the line source

that was constructed on the basis of the conventional radiation theory,
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which contains no hint of the composite nature of the source's total

field, it would have been impossible to perceive how to make the correct

modification of the theoretical waveform in order to bring it into agree-
ment with observation.

Minor departures of experimental results from the results expected

theoretically also occur. Their causes are discussed and some errors

inherent in the measurement system are evaluated. It is found that in

some particular instances it is fortuitous that small experimental errors

are present, since these perturb the symmetry inherent in the experiments.

This perturbation makes it possible to describe the behavior of the Type

F36 sources spatial-impulse-response-function waveform in regions of

angular orientation where large changes in the shape of the waveform

result from small changes in the angle 0.

Summary of the Contributions of this Research

The research reported here makes three major and six secondary

contributions to present knowledge. The three major contributions are as

follows. First, the Rubinowicz-Maggi formulation of diffraction theory

is verified by the experiments reported here. Not only does this

dissertation report the first quantitative comparison of the Rubinowicz-

Maggi theory with the results of acoustic-radiation experiments, but if

one includes experiments in optical diffraction as well, the research

here provides one of the few existing experimental investigations of the

phenomena predicted by the Rubinowicz-Maggi theory. The reported experi-

ments confirm the existence of geometrical and boundary diffraction waves

in the radiated field of a line source. These field components are found

experimentally to have the characteristics that are expected on the basis

of the theory.

The second major contribution of this research is the development

of a new theoretical expression for the field of an acoustic line source

of finite length. This result is an exact expression describing the

time-domain behavior of the finite line source's pressure field everywhere--
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both in the source's nearfield and farfield regions. The new result

reported here is potentially useful in analyzing a variety of general

problems in acoustic-radiation theory.

Design and development of the unique experimental system described

in this dissertation is the third major contribution of this research.

The waveform-generating equipment in the electronic system, which is used

in the experiments to produce pseudorandom noisebursts and tonebursts of

variable frequency, can, in fact, be used to produce, in real time, any

waveform that can be generated in digital form by the computer. A second

unique feature of this measurement system is its ability to digitize

electrical signals, under digital control, and to record these signals

directly in a form that is suitable for computer processing. A third

unique feature of the experimental system is the digital timebase that

permits all subunits of the system to operate in complete synchronism

under the control of a single master clock. Coupled with the accurate

positioning apparatus that was used in the experimental arrangement, the

electronic system described in this dissertation made it possible to

conduct laboratory acoustic-radiation experiments with a degree of

precision greater than that which is generally attained elsewhere.

The six secondary contributions of the research reported here are

as follows. First, since the Type F36 source is a transducer presently

in widespread use in underwater acoustics, the research shows that the

concepts of the Rubinowicz-Maggi theory are of practical, rather than of

purely theoretical, significance. Just as these concepts are used here

to analyze the radiated field of the Type F36, they may likewise be used

in understanding the phenomena occurring in other practical problems

involving acoustic radiation, reception, or scattering. Second, it is
shown both theoretically and experimentally that the equivalent of very

long noise-signal records can be obtained by combining the results

produced by a number of much shorter signal records. This means that

experiments that require long records of noise signals can be performed

in a confined volume of water--a tank or lake--where the boundaries of
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the water volume limit the length of the signal record with which one can

work. Third, Schoch's analysis has been carried out, for the first time,

for the general case of a planar piston defined by a convex boundary

curve. The result is a new asymptotic expression for the field of such a

piston that is far more general than the results that have been reported

previously. Fourth, a new experimental method for generating tonebursts

has been devised. Since tonebursts are widely used as acoustic test

signals, this method should be of interest to other experimenters. Fifth,

a new technique for representing sampled records of impulse functions has

been devised that is based upon Lagrangian interpolation formulas. This

method should have more general applicability, for example, in certain

problems associated with the representation of complex signals and their

spectra by means of the fast-Fourier transform. Sixth and finally, a

codification and analysis of the historical development of the

Rubinowicz-Maggi theory is presented. This is useful, not just from a

cultural standpoint, but also for the insight it gives one into the

physical bases of radiation, diffraction, and scattering phenomena. This

insight is vital if knowledge is to be extended beyond those areas that

can be dealt with using only the conventional theories of the present time.

Preview

The development of the physical concepts embodied in the

Rubinowicz-Maggi formulation of diffraction theory is traced in Chapter I

of this dissertation. In Chapter II, the notion of the spatial impulse

response of an acoustic radiator is introduced by deriving a time-domain

expression for the field of a planar source using the conventional approach

to radiation theory. Schoch's analysis of the radiated field of a piston

source, which he developed on the basis of the Rubinowicz-Maggi diffraction

theory, is discussed in the first part of Chapter III. In the second part

of that chapter, the general integral expressions that result from Schoch's

analysis are evaluated by the method of stationary phase and the new

asymptotic formula for the spatial impulse response of a planar source is

found. The theoretical development in Chapter IV results in the new
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time-domain expression for the radiated field of a line source of finite
length. The methodology behind the experimental determination of the

spatial impulse response of an actual line transducer, by means of input-

output cross-correlation measurements, is discussed in Chapter V, while

the experimental equipment and techniques used to carry out such measure-

ments are described in Chapter VI. The experimentally obtained spatial-

impulse-response-function waveforms are reported in Chapter VII, and
compared in this chapter to theoretical waveforms constructed on the

basis of the analysis developed in Chapter IV.
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CHAPTER I

INTRODUCTION

The research reported here is a study of the acoustic field

radiated by a line source of finite length. Although it might appear at
first glance that the finite line source, as a radiator of sound, is so

simple and so well-understood that any further effort to analyze its

characteristics would be banal, this dissertation will demonstrate that,

contrary to this appearance, the radiated field of the line source is a

composite of several components, whose existence has, heretofore, been

only vaguely suspected and whose characteristics have not been previously

understood. In particular, an examination of the composite field radi-

ated by a line source, enables one to experimentally detect the so-called

'boundary diffraction waves" and to measure their characteristics, as

well as to experimentally explore other physical phenomena associated

with them. Indeed, as will be shown subsequently, the use the finite

line source naturally suggests itself, when one is designing a definitive

experiment to detect boundary diffraction waves. Prior to the work

reported here, such a definitive experiment has not been done in

acoustics.

It is the purpose of the research reported here to experimentally

examine the consequences of the analysis that predicts the occurrence of

boundary diffraction waves, in addition to other such component waves,

in a radiated, a diffracted, or a scattered field. The corpus of

analytic and experimental results describing radiated, diffracted, or

scattered fields in terms of such component waves may be referred to as

the Rubinowicz-Maggi theory. This theory originated from the study of

optical diffraction phenomena, but it has, as will be shown by the work

presented here, important ramifications in the theory of acoustic

radiation. In order to introduce the requisite theory and to enable one

1
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to place the present research in its proper context with respect to this

theory, it is useful to begin the discussion with a historical account of
the development of the Rubinowicz-Maggi theory and of the origin of

certain other related results. Much of the historical information pre-
sented below can be found scattered throughout the technical references
to be cited. In addition, one should refer to the historical paper by
Rubinowicz [11 and to the books by Baker and Copson [21 and by Born and

Wolf [3] for accounts of the background of the Rubinowicz-Maggi theory.
Also the book by Mach [4] is useful for an account of the historical
background of what can be called conventional diffraction theory. In the
historical summary to follow, the emphasis will be placed upon the

physical ideas involved in the Rubinowicz-Naggi theory and upon the
phenomenological description of its significant features, rather than
upon the analytic expression of the theory, except where it becomes

necessary to introduce mathematical results in order to clarify the
presentation.

The conceptual genesis of the boundary diffraction wave actually
antedates the conventional formulation of diffraction theory. Grimaldi
[51, in 1665, reported the first systematic experiments concerning the
diffraction of light. Shortly thereafter, Newton repeated Grimaldi's
experiments and, in addition, made a number of original observations of

diffraction phenomena. in one of Newton's experiments, he observed the

diffraction pattern that was caused by the edge of a knife when a narrow

beam of sunlight fell upon it through a small aperture. When Newton

viewed the light-diffracting knife-edge, with his eye in the region of
the geometrical shadow of the knife, he observed [61 that the portion of
the knife-edge illuminated by the sunlight appeared as a thin luminous

line. In addition to this observation, Newton noted [71 that, when he
moved his eye parallel to the knife-edge, the knife-edge still appeared
bright, even when his eye was not directly behind the aperture through
which the sunlight passed before falling upon the knife. Moreover,
Newton also noted that the luminous line became finer as he moved his
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eye farther into the shadow region [8].

In Newton's diffraction experiment, the knife-edge appeared as a

source of light. This line source radiated into the region of the

knife's geometrical shadow and, moreover, appeared to have directional

properties. According to the Rubinowicz-Maggi theory, the diffraction

pattern of a semi-infinite screen (Newton's knife-edge), in the region

of the screen's geometrical shadow, results from a boundary diffraction

wave radiated by the screen's edge, while outside of the geometrical

shadow, the screen's diffraction pattern is caused by the interference

between this boundary diffraction wave and the incident light that by-

passes the screen. Moreover, the boundary diffraction wave in the

Rubinowicz-Maggi theory possesses directional properties, since it gives

rise to the observed diffraction pattern both within and outside of the

region of the screen's geometrical shadow. Newton's observations of the

luminous knife-edge thus constitute the first evidence of boundary-

diffraction-wave phenomena.

Young commenced his study of optics in 1799. Since Young had

command of a considerable knowledge of acoustics, he was able to apply

the then conjectural hypothesis, that light is a wave phenomenon, to

explain in a straightforward fashion many of the earlier observations

that resulted from interference and diffraction experiments. Young's

wave-theoretical model of the half-plane diffraction problem evolved

between 1799 and 1804. Young maintained that the diffraction pattern,

produced by a semi-infinite screen, resulted from interference between

those light waves in the incident beam that passed far from the edge of

the screen, and which, consequently, were little influenced by it, and

those light waves that passed so near the edge of screen that their

course was altered. Diffraction, i.e., interference, fringes would

thereby be produced, owing to the different paths traversed by the

deviated and undeviated waves. The deviation, or as Young called it

"inflection", of waves by the screen's edge was first thought by Young

to be due a refraction-like effect [9]. The screen, being composed of
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ponderable matter, was conceived by Young to influence the medium of

propagation of the light waves (i.e., the "aether"). This influence of

the screen was thought to depend on some power of the distance. Thus,
Young believed that the properties of the aether in the vicinity of the

edge of screen were altered to a greater degree than they were far from

the screen. Consequently, the waves passing near the screen would suffer

a greater deviation and, hence, would travel over a greater distance than

would the practically undeviated waves far from the screen. Owing to the

resulting phase difference at the observation point, the deviated and

undeviated waves would produce, by interference, the bright and dark

fringes in the diffraction pattern.

In formulating his model of diffraction by a semi-infinite screen,

Young also included waves, which after deviation by the aetherial medium

were, supposedly, then reflected from the edge of the diffracting screen

[10,11]. However, until 1803, Young apparently retained the notion that
a change in the properties of the aether, induced >,y the presence of the

screen, was the primary cause that produced deviation of the waves that
pass near the screen's edge. He viewed the role of reflection at the
edge of the screen as secondary. But after Young conducted a series of
diffraction experiments, which were reported late in 1803, he abandoned

his view that diffraction phenomena resulted from a variation in the
properties of the aether [12]. Young did not, however, abandon his
conceptual picture in which he viewed the diffraction pattern of a
semi-infinite screen as the result of an interference between undeviated
waves in the incident light beam and waves that suffer a modification at
the edge of the screen.

Young refers to this modification as a "reflection" of the waves

by the edge of the screen, much like the reflection he had earlier viewed
as a possible secondary contribution to the interference that produced

a diffraction pattern. Now, however, this formerly secondary contribu-

tion became an essential element in Young's model of diffraction; the

diffraction pattern resulted from interference between waves in the
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incident light beam and waves reflected at the screen's edge [12,13]. It

is clear that Young did not regard this reflection process, taking place

at the edge of the screen, as being reflection of an ordinary sort.

First, he was certainly familiar with the results of a diffraction

experiment that had been performed by Hooke, even prior to Newton's

investigations. Hooke had used the blade of a straight-razor [14] and

had separately observed both the diffraction pattern produced by the

sharp edge of the blade and that produced by its blunt side. There was

found to be no difference in the diffraction patterns produced in the

two cases. Since the sharp and blunt sides of the blade would reflect

light much differently, one would certainly expect quite different

diffraction patterns in the two instances, if one component in the

blade's diffracted field were generated through an ordinary reflection

process. Moreover, even if one could account for the diffraction

pattern of a screen, in the region directly illuminated by the incident
light, as the result of an interference taking place between this incident

light and light undergoing an ordinary reflection process at the screen's

edge, such an interference can hardly account for the diffraction fringes

observed within the region of the screen's geometrical shadow where there

is no incident light. Not only is there this difficulty, when attempting

to explain the nature of the process taking place at the edge of the

screen in terms of reflection, but one must account for Newton's observa-

tion that the illuminated part of screen's edge appears as a luminous

line, even if the eye is placed deep in the region of the screen's

geometrical shadow. Since, in an ordinary reflection of the incident

light, it is required that the angles of reflection and incidence be

equal, there is no way that light can be reflected deep into the region

of the screen's geometrical shadow.

Although Young referred to the process taking place at the screen's

edge as "reflection" he used the term somewhat vaguely, as if for want

of a better word. He knew that light of low intensity could be found

deep in the screen's geometrical shadow region [15], but he admitted



6

that he did not yet understand how it reached there from the diffracting
edge. What Young did realize was that, in the directly illuminated
region (i.e., the region outside of the screen's geometrical shadow),

he could describe the results of his diffraction experiments very well

in terms of an interference between light in the incident beam and light

arriving at the observation point from the edge of the screen [161, even

though the observed diffraction pattern did differ in certain instances
from that expected on the basis of this model [173. Subsequently, Young

refined his model [18,191 and considered that the edge of the diffracting

screen was a source of waves, which interfered with the incident wave in
the directly illuminated region and which diverged from the screen's
edge into the geometrical shadow region.

It is worth examining the development of Youngt s conceptions in
detail, since his studies had led him to a rudimentary, but in many

respects a fundamentally correct, model of diffraction phenomena.
According to the Rutinowicz-Haggi theory, the diffraction by a semi-
infinite plane would be described in just such a fashion. However,
while this modern model of the diffraction process is much like that
conceived by Young, there is one important difference. The wave from

the screen boundary envisioned by Young was simple. In the illuminated
region, where it interfered with the incident light, Young regarded it
as a uniform cylindrical wave. However, according to the Rubinowicsz-
Maggi theory, the boundary diffraction wave, as it will be seen
subsequently, not only has directional properties, but, in the region
of the geometrical shadow, it has a phase opposite to that which it
possesses in the illuminated region. Had Young been able to attribute
proper directional and phase characteristics to his boundary wave, he
could have correctly described the several observations that called his

theory into question. Fresnel pointed out that there were serious

problems with Young's diffraction model. Since the knowledge of

diffraction then available to Young was not sufficient to allow him to

refute Fresnel's arguments, Young's theory of diffraction came to be
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regarded as incorrect.

Fresnel's early view of diffraction phenomena was quite similar
to that of Young, but he was led to reject this view as a result of a

series of careful experiments. Fresnel studied the diffraction patterns
produced by a slit. In his initial investigations, Fresnel found that
he could describe the diffraction pattern of a slit, at least to a good
approximation, by using the model of Young. Since a slit possesses two
edges, the interference effects of three component waves, one wave from

each edge and the wave owing to the incident light, must actually be

accounted for in this situation, when one adopts Young's viewpoint.

However, if Fresnel attributed the diffraction pattern observed in

different regions to the interference of different pair of these

component waves, then the appearance of the fringe system in the dif-

fraction pattern of the slit could be explained reasonably well, save

for two of its features. First, as Young had earlier noted [17], some

of the observed diffraction fringes were displaced from the positions

predicted for them on the basis of the interference model. Second, in

explaining the fringe system using the model of Young, it was necessary

for Fresnel to assume that a component wave from the boundary of the

slit started out with a phase opposite to that of the wave character-

izing the incident light. If this was not done, and the interference

between waves was calculated only on the basis of path differences,

Young's model predicted intensity maxima where minima should lie in the

diffraction pattern and vice versa. Young apparently knew [16) of the

necessity for introducing a phase change of Tr into his boundary wave,

but never attempted explain its introduction on a physical basis.

Fresnel tested by experiment the hypothesis that it is the inter-

ference between pairs of waves which gives rise to the observed

diffraction pattern of a slit. He reasoned that, if the diffraction

pattern in a certain region is produced by the interference of a particu-

lar pair of waves, then it should be possible to modify one part of the
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diffraction pattern, and at the same time leave another part unaltered,

by changing the conditions of diffraction at a single edge of the alit.
However, when Fresnel displaced one edge of the slit and left the other

edge fixed, he noted that the entire diffraction pattern changed. From

this experiment, Fresnel concluded that it is the mutual interference of
all the light passing through the slit that gives rise to the diffraction

pattern observed at each point, and not the interference produced by the

type of waves described by Young.

Fresnel went on to put his own new conception of diffraction on

a mathematical basis. In his analytical formulation, he adopted the
view of Huygens and regarded the incident light wave as arising from the

mutual interference of an ensemble of elementary waves (Huygens' wavelets),

to each of which Fresnel attributed directionality by means of an obliquity

factor. By considering that a slit, or any diffracting aperture, deletes
certain of these wavelets from the incident light, Fresnel was able to

explain how the resulting diffraction pattern, produced by that aperture,
can be regarded as the mutual interference pattern owing to the remaining

wavelets. Most damaging to Young's diffraction model was the fact that

the predictions of Fresnel's theory were much more closely in agreement

with experiment than were those predications made on the basis of Young's

ideas. Thus, Fresnel could calculate the positions of all the bright
and dark fringes observed in the diffraction pattern of a slit, while
Young's theory gave incorrect results for some fringe positions. More-
over, in Fresnel's model, there was no need to introduce an unexplainable
phase shift of TT into the interference process in order to obtain dif-

fraction maxima and minima in their correct positions.

On the basis of Fresnel's theory, in which conventional optical

diffraction theory has its origin, Fresnel and others who followed him

were able to simply and accurately predict the diffraction effects

observed in a wide variety of experiments. To be sure, certain questions

concerning Fresnel's theory arose during its early years, such as that

of the physical basis of the obliquity factor and that of the origin of
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certain phase shifts that one was required to introduce into the Huygens'

wavelets in order to formulate an incident field correctly. However, all

these questions concerning the otherwise completely successful theory

appeared to be satisfactorily answered when Kirchhoff, in 1882, formu-

lated Fresnel's ideas in terms of a scalar field described by a wave

equation.

Even Young, who corresponded with Fresnel, came to regard the

latter's theory as superior to his own. However, it would be well at

this juncture to take a second look at the experiment that led Fresnel

to reject Young's conceptual picture of diffraction phenomena. Fresnel

considered that the diffracted field of the slit at any observation

point must arise from the interference of a pair of component waves, if

one adopts the view of Young. Thus, according to Fresnel's interpreta-

tion of Young's model [20], in the slit's directly illuminated region,

there will be two regions in which one boundary wave or the other inter-

feres with the incident wave. These regions will be symmetrically

disposed about the center of the slit. There will also be a region near

the center of the diffraction pattern where, presumably, the boundary

waves interfere with each other, but not with the incident wave. It was

perhaps quite reasonable for Fresnel to believe that the critical test

of Young's diffraction model involved the idea that the diffracted field

of the slit arose from the interference of particular pairs of waves,

since the observed features of the slit's diffraction pattern could be

explained fairly accurately in terms of such interferences. However, if

there are two boundary waves originating at the slit's edges, in addition

to the incident wave, it is hard to see why one should not consider that

the diffracted field at any observation point results from the mutual

interference all three of the component waves, rather than from one

particular pair of these waves. If the diffracted field at every

observation point arises from the interference of all three component

waves, then varying the diffraction conditions at one slit edge by

moving that edge alone, as Fresnel did in his experiment, will cause

the diffraction pattern of the slit to be altered everywhere, which is
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exactly the effect Fresnel observed. Thus, it must be emphasized that

the result of Fresnel's experiment does not contradict the basic concept
of Young's diffraction model, if one conceives that the diffraction
pattern arises from the mutual interference of three component waves,
rather than from the interference of two such waves, which was the

hypothesis of Fresnel and, apparently, also of Young.

With Kirchhoff's analytical formulation of the ideas of Fresnel,
the conventional diffraction theory of scalar waves took on the basic
form it retains to this day. After the establishment of Fresnel's
concept of diffraction, Young's earlier ideas passed into eclipse for
many years, but were neither totally forgotten nor entirely discarded.
In 1886, Gouy [21,221 reported the results of experiments in which he
studied the diffraction of light by a semi-infinite metal screen, but
took into consideration the polarization of the incident light, the
material from which the screen was fabricated, and the shape of the
screen's diffracting edge. Gouy discovered, or one should say re-

discovered, since Newton's prior observations seem to have been forgotten

[22], that the edge of the diffracting screen appeared as a luminous

line. Gouy, like Young, considered the edge to act as a source that

radiates diffracted light into both the directly illuminated region and

the region of the screen's geometrical shadow. When Gouy examined the

diffracted light, he noted that its color and its state of polarization

depended, not only upon the state of polarization of the incident light,

but also very strongly upon the material from which the screen was made

and the extent to which the screen's diffracting edge was rounded when

it was fabricated. Kirchhoff's scalar-wave theory of diffraction could

certainly not be expected to account for the observed polarization and

color effects in the diffracted light 123]. To understand such effects,

the electromagnetic theory of light is required. However, Gouy's work,

and subsequent work along the same lines by Wien (24], led Maey to

examine the question of whether the phenomenon of the semi-infinite
screen's luminous edge could be understood on the basis of Kirchhoff's
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scalar-wave diffraction theory, or whether electromagnetic theory was

needed to explain it.

Maey [25] reported in 1893 that, indeed, one could use the scalar-

wave diffraction theory and derive as a consequence that the edge of a

semi-infinite screen should act as a light source. Maey also recognized

that a number of the results of his rather recondite mathematical analysis

could readily be interpreted in terms of the diffraction model of Young.
Maey was able to express the total scalar field, in the region directly

illuminated by the incident light, in terms of an interference between

the incident wave and a secondary wave. In the directly illuminated

region, this secondary wave was found to have an amplitude equal to that

of the incident wave, but a phase angle differing from the incident wave

by v . It will be recalled that Young had to introduce just such a phase

difference in order to account for the observed positions of maxima and

minima in the diffraction patterns he observed. Also, Maey concluded

that the secondary wave exhibited opposite phases, when observed on

either side of the boundary plane defining the screen's geometrical

shadow region. Moreover, this secondary wave appeared to possess other

complex phase characteristics, both within and outside the screen's

geometrical shadow region. It thus had far more complex properties than

those of the simple cylindrical boundary wave that Young invoked when

using his model to explain the diffraction pattern of a semi-infinite

screen.

Maey tried to understand the consequences of the Kirchhoff theory

in the problem of light diffraction by a semi-infinite screen in order to

be able to separate the purely geometrical effects of diffraction from

those effects dependent on the electromagnetic properties of light and

of the diffracting screen. Shortly afterward, Sommerfeld [26) published

his profound and fundamental theoretical paper on diffraction of light

by an infinitely thin, perfectly conducting half-plane. As is well known,

Sommerfeld was able to solve exactly the boundary-value problem for the

electromagnetic field described by Maxwell's equations. What is pertinent
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to the discussion here, is the fact that Sommerfeld's exact theoretical
solution is readily interpreted in terms of a diffraction model like
that of Young.

Consider the case in which an E-polarized monochromatic plane

wave

E i) Aejkrcos(G - a) (1)

is the incident upon the perfectly conducting half-plane that is depicted
in Fig. 1. As shown in Fig. 1, the wave normal of the plane wave, which
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observation point P may be located by the polar coordinates r and e. The
quantity k is the wavenumber of the incident wave and A is its amplitude.
The electric vector of the wave points in the direction of the z-sxis.
That is, this vector is parallel to the edge of the screen. The total
field may he expressed !27] as

E = E~g) + E (d), (2)

in which E(g) is a geometrical field given by the expressionz

jkrcos(e - a) jkrcos(6 + a)?(Ae -Ae , O•Q <r-y

E(g)= Aeikrcos(9 - a') TT - <1 < <C Ti a

0, TT + a <C s 2n

(3)

and E~d) is a diffraction field. From Eq. (3) and Fig. 1, it is seen
that the geometrical field is the sum of the incident field and a
specularly reflected field in region III, where 0 S 0 < TT - a. Region
III is defined by the screen and by plane Oa in Fig. 1. On the other
hand, in the directly illuminated region II, between the planes Oa and
Ob, the geometrical field is due to the incident wave alone. Region I,
the geometrical shadow region, lies between plane Ob and the screen.
In the shadow region, n7 + a < 0 • 2rr. Here the geometrical wave vanishes.
Note that the geometrical wavefield, given by Eq. (3), changes discontinu-
ously when the observation point passes from one region to another.

If kr is large, that is, if P is many wavelengths from the edge
of the screen, the diffraction field may be expressed

E _d) A(½Tikr)_ ei (kr + 2) {sin(4O)sin(ka)) (4)z cose T COWNI (4
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This asymptotic expression for the diffraction field is valid everywhere,
except in the vicinity of the boundary planes Oa and Ob. Equation (4)

shows that the diffraction field has the form of a directional cylindri-

cal wave that emanates from the edge of the screen. Since the diffracting

screen in the Sommerfeld problem is a perfect conductor, it is also
perfectly reflecting. This is in contrast to the nature of the dif-
fracting screens usually considered in the scalar-wave theory. In

scalar-wave diffraction theory, the screens considered are perfectly

absorbing, i.e., "tblack"t, in which case, there is no contribution to the
diffraction pattern owing to the light falling on the side of the screen

facing the incoming light wave. The cylindrical wave from the edge of

the screen, which is expressed by Eq. (4), contains such a bright-side

component in addition to the pure-diffraction component that would appear

if the diffracting screen were perfectly black, The bright-side and pure-

diffraction components can be separated by expressing Eq. (4) in the form

EZ _ A(Slkr) e( + T { coste(a + a)] cos[½(Q - CO

The first term within the braces of Eq. (5) is associated with the bright

side of the screen [28], that is, with the "reflected" contribution to
the cylindrical wave from the edge of the screen. The second term within

the braces, the term containing the factor cos[½(0 - C)} in its denomina-

tor, is the pure-diffraction component, like that which would be present
in the case of diffraction by a black screen. Note that in region II
this pure-diffraction component has a sign opposite to that of the

incident wave. Consequently, the diffracted component interferes de-

structively with the incident wave there, just as the boundary wave does

in the model of Young. Moreover, in region I, the region the screen's
geometrical shadow, this pure-diffraction component has a sign opposite
to that which it has in the directly illuminated region, that is, which
it has in region II. Thus, this pure-diffraction component changes signs
when one crosses the plane Cb that delineates the screen's geometrical
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shadow. Whether or not the field owing to this diffraction component
changes discontinuously at the shadow-boundary plane Ob cannot be deduced

from Eq. (5), since the asymptotic formula is not valid in the vicinity
of this plane. It might be mentioned, incidentally, that, if the magnetic
vector H, rather than the electric vector E, of the incident plane wave
were parallel to the edge of the diffracting screen, results very similar
to those expressed by Eqs. (2) through (5) would be obtained. Sommerfeld's

exact theory of the diffracting half-plane thus predicts a diffracted
wave emanating from the edge of the screen, which interferes with the
incident wave in the illuminated region and which radiates into the
screen's geometrical shadow region. If the same objections to this model
are raised that were raised to the model of Young, they are readily
refuted [29] by taking into account the directional and phase properties
of the wave emanating from the screen's boundary. Nevertheless, in spite
of the fact that the solution of Sommerfeld analytically yields up an
expression for a wave originating at the boundary of a diffracting screen,
many investigators [30], including Sommerfeld himself [31], do not regard
this wave as being physically real. This view persists to the present
day.

Rubinowicz [32] made a fundamental contribution to the theory of
the boundary diffraction wave when, in 1917, he reformulated the scalar-
wave diffraction theory of Kirchhoff. In Kirchhoff's formulation of
diffraction theory, which follows from the original conceptions of
Fresnel, one is concerned with calculating two-dimensional integrals.
Such integrals sum up the contributions at the observation point of all
the Huygens' wavelets that are not blocked by the diffracting screen.
Thus, such integrations are taken over the surface of the diffracting
aperture. Rubinowicz showed that the total field in a diffraction
problem could be decomposed into the sum of a primary field and a
diffracted field. The primary field in Rubinowicz's theory is geometric
in nature. On the side of the diffracting screen opposite the light
source, this primary field is the same as the field of the incident wave,
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if one observes it in the directly illuminated region. On the other hand,

the primary field is zero, if one observes it in the geometrical shadow
region of the screen. This primary field, like the geometrical field
expressed by Eq. (3), is thus discontinuous across the surface delineating
the shadow boundary.

Rubinowicz's formulation of the diffracted field is extremely
significant. Rubinowicz showed that the diffracted field could be
expressed as a line integral taken along the boundary of the diffracting
aperture, rather than as a surface integral over the aperture itself.
Thus, in the formulation of Rubinowicz, the diffracted field truly arises
at the edge of the diffracting aperture. In this formulation of dif-
fraction theory, as in the early diffraction model of Young, a wave
emanates from the edge of the diffracting aperture. In the directly
illuminated region, this boundary diffraction wave interferes with the
primary wave to produce the diffraction pattern there. In the screen's
geometrical shadow region, where the primary wave is not present, the

boundary diffraction wave alone gives rise the observed diffraction
pattern of the aperture. The field of the boundary diffraction wave
changes discontinuously across the surface delineating the geometrical
shadow region, but in such a way that the total field, which is the sum
of the primary wave field of the boundary diffraction wave, remains

continuous everywhere. Such a continuity of the total field requires
that the field of the boundary diffraction wave have a phase opposite to
that of the primary wave in the directly illuminated region and suffer a
phase change of TT when the shadow boundary is crossed. Moreover, the

boundary diffraction wave has, in addition to such unique phase charac-
teristics, definite directional properties. Thus, in contrast to the
simple boundary wave envisioned by Young, the Rubinowicz boundary

diffraction wave is capable of accounting for the observed features of a
diffraction pattern as faithfully as they can be accounted for in the
Fresnel-Kirchhoff model. Indeed, this must be the case, since the
Rubinowicz and the Fresnel-Kirchhoff models of diffraction are two
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different analytical formulations describing the same physical phenomena.

It is important to note that the basic properties of the boundary
diffraction wave deduced by Rubinowicz, as well as some of those properties

deduced even earlier by Maey on the basis of scalar-wave diffraction
theory, are quite like the properties of the pure-diffraction wave that
appears to originate at the edge of the diffracting half-plane in the
problem that Sommerfeld solved exactly. Rubinowicz's decomposition of the
total field in a diffraction problem into a geometrical field and a
diffracted field and his expression of the diffracted field as a line
integral along the edge of the diffracting aperture thus appears to
provide a description, in terms of scalar-wave theory, of those dif-
fraction phenomena that are not strongly dependent upon the electromagnetic
properties of the screen. One must note that even before Sommerfeld
solved the half-plane problem, Maggi [33], using the scalar-wave theory
of Kirchhoff, showed that the total field in a diffraction problem could
be decomposed into the sum of a geometrical and a diffracted field, thus
anticipating this aspect of the later work of Rubinowicz. However, Maggi
apparently did not express his diffracted field as a line integral taken
along the edge of the diffracting aperture as did Rubinowicz, and,
therefore, did not necessarily associate the diffracted component with
the edge of the aperture. Maggi's work lay in obscurity until Kottler
[341 rediscovered it in 1923 and showed that one could transform Maggi's
diffraction component into the line-integral form of Rubinowicz. It is
for this reason that the name of Maggi is usually associated with the
theory of the boundary diffraction wave.

In 1924 Rubinowicz [38] examined some further consequences of his

reformulation of scalar-wave diffraction theory. If the Rubinowicz-Maggi
theory is applied to the problem of light diffraction by apertures in
plane screens, additional boundary-diffraction-wave phenomena become
manifest. The field of the boundary diffraction wave in the case of a
diffracting aperture is given by an integral along the edge of the

aperture, but all points on the aperture boundary are not equally
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effective contributors to the diffracted field at an observation point4
Suppose one considers all possible optical paths, which connect the source
point of the incident light wave with the observation point and which pass
through points on the boundary of the aperture. One then finds that it
is those boundary points for which the length of such paths assumes an
extremum value that determine the diffracted-wave field at the observation
point. Each such "active point" [36l on the boundary of the aperture,
which defines an extremum of the path length, has surrounding it an
"active region" that radiates light to the observation point. The
contributions to the field at the observation point from the remainder
of the aperture boundary may be considered to be negligible. For
example, suppose light from a point source is diffracted by a circular
aperture in a plane screen, with the source point situated on an axis
perpendicular to the screen that passes through the center of the

aperture. If one observes the aperture from a point not situated on the
aforementioned axis, two bright spots will be seen on the edge of the
aperture. The centers of these bright spots will be at opposite ends
of a diameter of the aperture. Passing through the two aperture-
boundary points defined by this diameter, will be two optical paths
connecting the source and observation points; one of these paths will be
maximum in length and the other will be minimum.

One can analytically demonstrate the existence of active points
and active regions on the aperture boundary by evaluating the line
integral, which expresses the field of the boundary diffraction wave,, by
an asymptotic technique, such as the method of stationary phase. If this
is done, the only significant contributions to the value of the line
integral come from neighborhoods of those points on the aperture boundary
for which the length of the optical path connecting boundary points to
the source and to the observation point takes on an extremumu value.
The physical interpretation of this result can be formulated in terms
reminiscent of Fresnel's concept of the interference of Huygens' wavelets.
One has, at the observation point, diffracted-field contributions
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arriving from all parts of the aperture boundary. However, the phase

of the contributions arriving at the observation point from the various
differential length elements of the aperture boundary is a rapidly
varying quantity, except in the vicinity of active points. Consequently,
all the contributions from the aperture boundary cancel one another by
destructive interference, save for those arriving at the observation
point from the active regions.

Additional theoretical details of the Rubinowicz-Maggi model of
diffraction phenomena were elucidated in the 1930's. Rubinowicz [37]

examined the nature of the discontinuous phase change that occurs in the
diffraction wave at the boundary of the geometrical shadow of a
diffracting aperture. 'Re also addressed the related question of the

discontinuous phase change suffered by a spherical wave when it is

brought to a focus. in this problem, if one examines the wavefield near

the focus, he finds that the phase of the diverging spherical wave on

one side of the focal point is opposite that of the converging spherical

wave on the other side. Bouwkamp 138] also considered this problem in

1940, but, while he adopted Rubinowicz's boundary-diffraction-wave
concept, he criticized the introduction of discontinuous phase changes

by Rubinowiczs.

From the foregoing chronology, it is seen that the theoretical

concept of the boundary diffraction wave grew out of the accumulated

experience with optical diffraction phenomena in the period stretching

from Newton's investigations, which were made in about 1665, to the year

1940. After Young's initial efforts, the most significant theoretical

advances came as a result of Sommerfeld's 1896 paper and Rubinowlcz's

paper of 1917. Despite this long history, only a limited number of
optical diffraction experiments appear to have been conducted, which

have a direct bearing upon the diffraction model resulting from the

Rubinowicz-Maggi theory.

Kalaschnikow [39] is reported to have experimentally proven, in

1912, that the diffraction wave, which is predicted on the basis
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Sommerfeld's analysis, actually originates on the edge of the diffracting

screen. To accomplish this, Kalaschnikow cast shadows of wires, which

were placed in the field of the diffracted wave, upon a photographic
plate. From the position of these shadows, he then deduced the place of
origin of the diffracted wave.

In 1919, Banerji [40) experimentally investigated the formation
of boundary diffraction waves at the edges of circular and polygonial
apertures and slits. Banerji formed the image of the diffracting aperture
using a dark-field optical system that excluded all direct light from the
image by means of a properly placed stop. With this arrangement, Banerli
could observe only the diffracted light coming from the edge of an
aperture, even if he made the observation in the directly illuminated
region of that aperture. When he observed the light coming from one edge

of a slit, Banerji found that there was a very fine dark line at the
center of the bright line that coincided with the slit edge. Although,
Banerji was apparently unaware of the earlier work of anbinowiez, he
explained the cause of this phenomenon just as it would be explaned on the
basis of the Rubinovicz-Maggi diffraction model. That is, Banerji
regarded each portion of the edge of an aperture as radiating beams of
light in two different directions, with one beam on each side of the

wave normal of the incident wave. Moreover, Banerji concluded that the
light waves in the respective beams had opposite phases.

Banerji supported these conclusions with arguments based upon the
results of Sommerfeldts analysis, much like those discussed above.
Banerji also theoretically calculated the intensity distributions that
he would expect to observe with his dark-field optical system, when
using circular or rectangular apertures. These calculations, which were
made using the conventional Kirchhoff diffraction theory, predicted the
occurrence of the fine dark fringe at center of the luminous edge of a
diffracting aperture just like those that Banerji actually observed.

Unfortunately, the diffraction images Banerji observed experi-
mentally depended very much upon the size and shape of the stops used in
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his optical system. For this reason, Banerji did not observe such
phenomena as the radiation of light by active points on the edges of his
diffracting apertures. Neither could his calculations lead him to suspect
the existence of such phenomena, since these calculations included effects
of the transmission characteristics of his optical system and these
effects tended to obscure those effects due solely to the boundary
diffraction wave. Nevertheless, Banerji's observations appear to provide
the best direct experimental confirmation of the Rubinowicz-Maggi optical
diffraction model, although there is one other noteworthy experimental
result.

In 1922, Noack [411 also observed the dark line at the center of
the luminous edge of a diffracting screen. Noack, too, used a dark-field
optical system to exclude the effect of the incident light wave when
observing the diffracted field, although his system differed from that of
Banerji. However, Noack brought the images of the bright fringes on
either side of the dark line together optically and observed the inter-
ference pattern that resulted. Noack then inserted a half-wave plate
into the optical path of the light beam corresponding to one of the two
bright fringes, and, thereby, retarded the light wave constituting this
beam by a half-period. Noack was able to show from the change produced

in the interference pattern that the waves from the two bright fringes
must differ in phase by Tr in the absence of the half-wave plate. Thus,
Noack confirmed experimentally that the phase of the boundary dif-
fraction wave, in the geometrical shadow of a diffracting aperture,
differs by TT from the phase of this wave in the directly illuminated
region.

The Rubinowicz-Maggi theory and the boundary-diffraction-wave

concept did not enter the science of acoustics until 1941. In that year,
Schoch [42] introduced a new expression describing the acoustic field
radiated by a planar piston. Schoch's formulation, which was based on
the ideas set forth by Rubinowicz, will be dealt with in detail in
Chapter III of this dissertation. At this juncture, it is sufficient
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to note that Schoch's analysis of the problem of radiation by a piston
introduces into radiation theory, either explicitly or implicitly, all
of the concepts that were previously discussed in connection with
optical diffraction phenomena--boundary diffraction waves radiated by
the edge of the piston, geometrical waves directly in front of the piston,
active points and active regions on the piston's periphery, regions in
the piston's radiated field that are analogous to the geometrical shadow
region and to the directly illuminated region in the case of optical
diffraction, discontinuous changes in the phases of radiation-field
components, etc.

Knowledge of Schoch's analysis has become widespread. For
example, Stenzel [43] used Schoch's integral, which expresses the
radiated boundary diffraction wave, in constructing an exact solution
to the problem of the radiating circular piston. Similarly, Carter and
Williams [441 incorporated Schoch's formulation in their analysis of the
radiated field of such piston. Also Kozina and Makarov [45,461 have

analyzed the transient fields radiated by plane pistons of arbitrary
shape, using Schoch's analytical results as a starting point. In
addition, numerous references to Schoch's 1941 paper may be found

scattered throughout the acoustical literature in many of the papers
that treat the radiation fields of pistons or problems associated with
transient radiation by acoustic sources. It also should be mentioned
that, in studying light diffraction by a circular aperture,
Ramachandran [47] developed expressions that are quite similar to those
obtained by Schoch for the piston radiator. Also, in a 1951 paper by
Chetayev [48], one may find an analytic representation of the radiated
field of a piston that is the same as Schoch's.

There are few experimental investigations in acoustics that deal
with boundary-diffraction-wave phenomena in any direct fashion. In 1941,
Osterhammel [49] studied both the sound fields radiated by thin brass
plates that were driven by vibrating quartz bars and the sound fields
radiated by such bars themselves. All the vibrating quartz bars
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Osterhanmmel used were long and thin and were cut from the mother crystal
so that they vibrated in a thickness mode. Thus, Osterhammel investigated
the acoustic radiation from vibrators that approximated rectangular
pistons with faces that were very long in comparison with their widths.
Osterhammel immersed these vibrators either in xylol or benzol and
observed their radiated pressure fields optically by using a dark-field
schlieren system. The long edge of the rectangular piston face was
aligned, in each case, parallel to the direction of the collimated light
beam, so that the short edge of the piston appeared in the optical image
when the schlieren system viewed the sound field directly in front of the
piston. The optical images of radiated sound fields thus obtained were
photographed by Osterhaxnmel and the positions of the bright and dark
spots on the pictures were measured.

Osterhammel had earlier noted when observing sound fields
optically, that a long, thin rectangular piston produces an essentially
two-dimensional sound field in the region directly in front of the piston.
That is, directly in front of the vibrating surface, the sound field of
a long, thin rectangular piston produces an optical image that approxi-
mates closely the image that would be produced by the sound field of an
infinitely long vibrating strip that had the same width as the long,
thin piston. To explain the observed distribution of bright and dark
spots in his photographs, which correspond to pressure maxima and minima
in the sound fields of his piston radiators, Osterhammel invoked the
diffraction model of Young. Osterhammel analyzed the radiation fields
in front of the pistons exactly as Fresnel analyzed the diffraction
pattern of a slit on the basis of Young's model. That is, Osterhammel
supposed simple cylindrical waves to diverge from each of the two long
edges of a piston face and supposed a progressive plane wave, with wave-
fronts parallel to the piston face, to exist in the region directly in
front of that piston. Osterhammel argued that it is the interference
between particular pairs of the three existing waves that causes the loci
of the pressure maxima and minima in front of the piston to be hyperbolae.
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He constructed such hyperbolae on the basis of this theoretical model and
compared the positions of the bright and dark spots in his photograph to

them. Osterhammel concluded that his experimental results agreed with
theory to within I to 2 percent.

Young knew [501 that the bright and dark spots in the diffraction
pattern of a straight-edge generally lay on equilateral hyperbolae. As
was pointed out earlier however, Young also knew that the position of all
fringes could not be predicted exactly using his diffraction model. More-
over, as was also pointed out earlier, it is necessary to assign a phase

shift of Tn to the cylindrical wave diverging from the diffracting edge in
order to predict the locations of the observed maxima and minima. It
will be recalled that it was just such problems with Young's model that

led Fresnel to reject it as incorrect and to develop, in its place, his
own, more accurate method of treating diffraction problems. However,

Osterhamel describes no significant deviations of his observed results
from the predictions made according to the theoretical model of Young,

nor does he indicate that he introduced a phase shift of n into his edge

waves when computing the theoretical positions of the bright and dark

spots on his photographs. As far as the detection of those bright and
dark spots that do not lie at the positions predicted for them on the

basis of Young's theory, one may speculate somewhat and argue that

Osterhammel's photographic method was not sensitive enough to resolve
the differences between the predictions of Young's approximate model
and those of the more precise Fresnel-Kirchhoff theory. That is, the
light intensity maxima and minima on Osterhammel's photographs are not
precise points, but are, rather, a pattern of somewhat diffuse patches,
having various shades of grey. For this reason, one might suspect that
it was not possible for Osterhammel to obtain the precise positions of
the intensity maxima and minima, and, consequently, of the corresponding
pressure maxima and minima in the sound field, with quite the accuracy

that he claimed.

Osterhanmel gives no discussion of the phase shift of it that
must be introduced into Young's model in order to have the interference,
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between the boundary wave from the piston edge and the plane wave in

front of the piston, yield maxima and minima in the correct positions.
However, Gessert and Hiedemann [51] later examined this question

experimentally. These investigators used an "ultrasonic stroboscope"
to examine, among other things, the field radiated by a quartz-crystal
radiator with a rectangular face 25.4 mm (1 in) long and 2.49 mm (0.0980

in) wide, immersed in carbon tetrachloride (for which, the sound speed
is 940 m/s). The crystal was driven at a frequency of 4.42 MHz. Gessert
and Hiedemann's ultrasonic stroboscope, like Osterhamnmel's schlieren

apparatus, utilized an optical system to form an image of the piston's
radiated sound field that could be photographed. Gessert and Hiedemann

concluded from such a photograph, that the experimental image obtained
was more consistent with the result expected, if there is a phase
difference of TT between the boundary wave and the plane wave in front of
the piston, than it is with the result that would be obtained if no such
phase difference existed. Moreover, when the photographs published by
Osterhammel were also examined by Gessert and Hiedemann, they could

reach this same conclusion from Osterhammel's results.

The remaining experimental paper dealing with boundary-diffraction-
wave acoustical phenomena, and probably the best such investigation,
heretofore, is that published by Dehn [52] in 1960. Dehn was aware of

the work of Schoch and experimentally tested some of the conclusions of
Schoch's theory both qualitatively and quantitatively. Radiation in the
nearfield region of a circular piston was examined. The radiating
piston was immersed in photographic developing fluid. Sheets of photo-
graphic paper, placed in front of the radiating piston, were used to
detect the pressure field. The plane of such a sheet was placed parallel
to the face of the piston and the sheet kept in the developing solution
for several minutes, during which time, the action of the sound field
caused a series of concentric bright and dark circular bands to appear
on the paper. Sheets were placed at different distances from the piston.
On any such sheet, a bright spot existed at the center of the circular
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band system when a pressure minimum occurred at the point on the axis

of the piston where it intersected the paper. Similarly, a dark spot
occurred at the center of the band system if the paper was placed so
that a pressure maximum existed at the point where the piston axis
intersected the paper. The alternating dark and bright circular bands
surrounding these bright or dark spots, in effect, allowed Dehn to map
out the pressure maxima and minima in the nearfield of the piston.

The positions of the nearfield axial pressure maxima and minima,
observed by Dehn, corresponded very closely to those expected on the basis
of radiation theory. (It should be pointed out that the nearfield
pressure on the axis of a circular piston is very easy to calculate
theoretically.) Arguments based on Schoch's theory were then set forth
by Dehn in an attempt to predict the positions of the concentric bright
and dark bands on his photographs of the circular piston's sound field.
Dehn drew a diagram such as is shown in Fig. 2 and invoked some of Schoch's

results in the course of producing the expression

0 = (jv/k)(kexpP-jkjz 2 + (a + x)2]½1 + i exp{-jk[z2 + (a - x) 2

+ exp{-jk[z + (n - ½) l) (6)

to describe the radiated sound field of the circular piston. In Eq. (6),
the quantity z represents the axial distance of the observation point
from the piston face, x represents the radial distance of the observation

point from the piston axis, a represents the piston radius, and X is the
wavelength of the radiated sound. The factor (n - ½)X, in the last term
of Eq. (6), which contains the arbitrary integer n, changes the phase of

the plane wave in front of the piston by an odd multiple of ar. Dehn
introduced this factor to make his formula conform to the theoretical

solution on the piston axis.

Dehn called his model, describing the radiated field in front of
a circular piston, the "three-ray method", because there are three
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Fig. 2--Dehn's model of the radiated field of a circular piston

interfering components in Eq. (6). To describe the radiated field in
Dehn's terms, one would say that each of the first two terms in Eq. (6)

describes a plane wave or "ray" from an edge of the piston while the
last term describes a plane wave or "ray" coming directly from the
piston face. Dehn discussed the positions and intensities of the circu-
lar bands in his photographs in terms of this three-ray model. In many
cases, Dehn could obtain approximate agreement between the predicted
band positions and intensities and those positions and intensities that
he observed. In other cases, he could obtain a qualitative description
of his observed band patterns using his three-ray model, although to do
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so he had to assign relative amplitudes and phases to the waves that

characterized his three rays somewhat arbitrarily.

Theoretically, the Rubinowicz-Maggi theory of optical diffraction
appears to have a strong foundation. Likewise, as will be shown when
Schoch's analysis is subsequently examined in detail, acoustic radiation
phenomena may readily be theoretically analyzed in terms of the Rubinowiaz-

Maggi theory. It can be seen from the foregoing discussion, however,

that experimental investigation of the concepts and the consequences of

the Rubinowicz-Maggi theory has been rather limited. The optical experi-
ments attempted to isolate the boundary diffraction wave and to determine
its properties. The attempts to isolate the diffraction wave in optical
experiments may be regarded as definitive only if one already accepts the
Rubinowicz-Maggi viewpoint. Since many investigators do not yet regard
the wave diverging from the edge of a diffracting aperture as physically
real, the optical experiments, heretofore, have not been completely
convincing, even in view of the experimental verification of the pre-
dicted phase differences when one observes the boundary diffraction wave

on different sides of the surface defining an aperture's geometrical

shadow region. Previously performed acoustical experiments provide even
less convincing evidence of the existence of boundary diffraction waves.

In order to describe his results, Osterhammel did little mre than invoke
the diffraction model of Young, which, for the reasons discussed pre-

viously, is known to be defective. Gessert and Hiedemann, on the other
hand, actually experimentally investigated a question relevant to the
Rubinowicz-l4aggi theory when they examined the field of the rectangular
piston in order to determine the phase of the wave originating at the
piston's edge.

Dehn's acoustical experiments deal with the important problem of

the radiating circular piston, but do not actually verify any of the
theoretical predictions of Schoch's theory. For instance, mathematically,
Schoch's analysis does not lead to Eq. (6) and to Dehn's three-ray model.
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Equation (6) is, by Dehn's own admission, an ad hoc result, and one which
should be considered to give only an approximate description of the
acoustic pressure in the circular piston's nearfield region. One rather
obvious shortcoming of Eq. (6) is that all three wave components in it
lack both directionality and range-dependent amplitudes, so that one could
hardly expect to predict the radiated pressure throughout the nearfield
region using such an expression.

The lack of definitive experimental evidence of boundary-
diffraction-wave phenomena, particularly in the acoustical radiation and
scattering literature, motivated the work that is reported here. As was
stated previously, the primary thrust of this work is experimental.
However, some useful new theoretical results also have been derived,
which describe the acoustic field of a line radiator of finite length in
the time domain. These new theoretical results, which are derived in
Chapter IV, clearly show that the radiated field of the line source is
comprised of three components. First, there is a geometrical component.
This component is a finite cylindrical wave diverging from the line. The
geometrical component exists only in the region that lies between two
hypothetical parallel planes, which pass through the ends of the line
source and to which the line is perpendicular. There is also a boundary-
diffraction-wave component radiated by each of the two ends of the line
source. The boundary-diffraction-wave components both have a "phase"
opposite to that of the geometrical component within the region between
the two hypothetical planes. If the boundary-diffraction-wave component
radiated by one end of the line is observed on opposite sides of the
hypothetical plane passing through that end of the line, it is found that
this component suffers a discontinuous change in phase of 17 at the plane
in question. This discontinuous phase change, however, ensures that the
total field radiated by the line source is everywhere continuous.
Boundary-diffraction-wave components are, moreover, directional, so that
the entire radiated field of the line source, in both the nearfield and
farfield regions, can be described as the superposition, i.e., the inter-
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ference, of the geometrical wave component and the two boundary-

diffraction-wave components.

The theoretical picture of the radiated field of a line source of
finite length, which is outlined in the preceeding paragraph was verified
experimentally. The experiments to be described subsequently use a
technique that is quite different from those used in most experimental
diffraction and radiation studies heretofore. The methodology behind the
experimental technique, the experimental system used to implement it,
and the experiments will be discussed in detail in Chapters V, VI, and
VII, respectively. The basic idea involved in the experimental method,
however, is to deal with the radiated field of a finite source in the

time domain, rather than in the frequency domain. In this way, the
effects of the various components in the radiated field of the source
may be spearated and observed directly. This is in contrast to the
situation usually encountered in a diffraction or a radiation experiment.
Usually, one uses a monochromatic incident light signal in a diffraction
experiment or else a harmonic excitation of the source in a radiation
experiment. The result in either case is a complex interference pattern
in which the effects of all individual component waves in the field
become merged together. Consequently, in the usual experiments, the
effects and properties of each individual component wave cannot be

observed separately, but can only be indirectly inferred from measurement
of the amplitude and phase of the harmonic field that results when two

or more of these component waves mutually interfere.

To describe the field of a radiator in the time domain, one
requires the concept of the spatial impulse response function of that
radiator. This concept is a natural extension of the notion of the
temporal impulse response of a linear system. Such a function was
apparently first used, in 1958, by Kennaugh and Cosgriff (53J for
describing scattered electromagnetic fields. In an acoustical radiation
problem, the spatial impulse response function relates the acoustic
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pressure (or, conceivably, any other field variable) to the geometry

of the radiating source. A spatial impulse response function may be
envisioned as the pressure field that results from a spatially uniform
velocity distribution on the radiator, which has a time history that is
described by a 6-function. Therefore, if the radiation process is indeed
localized, so that different radiated-field components actually originate

at different points on the source, it should be possible to deduce the
origin of such components from measurements of the source's spatial
impulse response function in the radiated field, since the components

from the various points on the source will, in general, arrive at an

observation point at different times. Moreover, if the various radiated-

field components present in the source's spatial impulse response

function can be separated in time, then it should be possible, in
principle at least, to study the effects and properties of each such
component separately.

In the investigation of acoustical boundary-diffraction-wave

phenomena, one finds that the line radiator of finite length is an
excellent sound source to study from both a theoretical and an experi-
mental standpoint. From the theoretical point of view, this source is

unique because one can find an exact solution that expresses its

radiated field in the time domain by solving the two-dimensional in-

homogeneous wave equation using integral-transform techniques. In this
solution, which expresses the source's spatial impulse response function
in terms of generalized functions, the three radiated-field components,
discussed previously, are clearly evident. In contrast to this situation,
one finds that, in case of the radiating piston treated by Schoch, the

equations describing the field contain line-integral expressions. These

line-integral expressions must be evaluated by means of an asymptotic

technique before the boundary-diffraction-wave components in the radiated

field can be localized and considered to originate at specific active

points on the piston's edge. Moreover, in obtaining a theoretical

solution to the radiating-piston problem, one is required to assume that
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the piston is located in an infinite rigid baffle, whereas in the case
of the finite line source, it is not necessary to assume that any baffle
at all is present.

The differences, which exist between the kind of theoretical
expressions that one obtains for the radiated field in the case of a
baffled piston source and in the case of an unbaffled finite line source,
have important implications from an experimental point of view. First,
suppose that one of the experimental objectives is to attempt to isolate
boundary-diffraction-wave components and to see if one can actually
localize the origin of such components to specific points on the radiating
source's periphery. If, in order to accomplish this objective, one
elected to experimentally investigate the field of a piston source, then
it would be necessary to experimentally satisfy those assumptions made
in Schoch's theory when evaluating the pertinent line integrals by means
of an asymptotic method. It will be shown in chapter III, that there are
a number of different circumstances for which such asymptotic evaluations

should yield adequate theoretical expressions for components of the
piston's radiated field. However, by far the most common of these

circumstances is that in which the size of the piston is very large in
comparison to the wavelengths of all spectral components in the radiated
sound field. Thus, in order to be able to compare experimental results
to theoretical predictions in the case of a radiating piston, one must
either use a very large piston source at frequencies in the audio range
or else use a piston of moderate dimensions and work at very high
frequencies. Neither of these choices is appealing when designing a
practical laboratory experiment. Using a very large piston requires that
one have a very large fluid volume available in which to conduct the

radiation experiment. On the other hand, operating in a very high
frequency range introduces difficulties in constructing reliable experi-
mental transducers and in positioning these acoustic devices precisely
without unduly perturbing the radiation field of the source by the
introduction of the positioning fixtures and the field-measuring
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transducer. Moreover, constructing a piston source that vibrates in
such a way that a uniform velocity distribution is obtained on its
radiating face is quite difficult if the size of the piston is very large
in comparison to the acoustic wavelength of the radiated sound. Unless
they are specially constructed, planar radiators in practice do not
usually act as vibrating membranes, but rather act as vibrating plates,
when the acoustic wavelength is but small fraction of the piston diameter.
Such plate-like vibration causes a non-uniform velocity distribution to
be created on the face of the piston. Yet the theory of Schoch requires
that experiments be performed with a membrane-like piston radiator having
a spatially uniform surface velocity. In addition to these difficulties,
the piston radiator must, theoretically, be surrounded by a rigid baffle
that is of infinite extent. While it is possible, experimentally, to
achieve the effect of an infinite baffle with a baffle of finite size,
use of any baffle means that the size of the experimental fluid volume
must be increased to accommodate it. Moreover, if the fluid in the
acoustic medium is to be a liquid such as water, then one is confronted
with an additional experimental difficulty, namely, the difficulty of
constructing a baffle that approximates a rigid surface, since, in water,
all common solid materials exhibit an elastic response to an acoustic
field.

Other experimental problems in designing a definitive boundary-
diffraction-wave experiment could be cited, but the list above is
sufficient to point out the desirability of studying the radiated field
of a finite line source, rather than that of a planar baffled piston.
One may outline the work to be presented subsequently in this disserta-
tion as follows. As was mentioned before, Schoch's analysis for a planar
piston source is examined in detail in Chapter III, in order to illustrate
the application of the Rubinowicz-Maggi theory to an acoustic radiation
problem. In particular, the spatial impulse response function of the
piston source is derived in Chapter III. Before proceeding with this
examination of Schoch's analysis, however, it is useful to introduce the
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notion of the spatial impulse response function of an acoustic source.

It is also worthwhile to obtain an expression for the spatial impulse
response function of a piston radiator using the conventional formulation
of radiation theory, so that one can compare this result with the corre-
sponding result obtained on the basis of Schoch's analysis. For these
reasons, the spatial impulse response of a piston source is derived in
Chapter II by means of a Green's-function formulation.

In Chapter II, the Green's-function approach is used to derive
the spatial impulse response function of a radiating piston with an
arbitrary shape that is surrounded by an infinite baffle. The spatial
impulse response function that results from this derivation is expressed
as a surface integral taken over the surface of the piston. On the other
hand, when Schoch's theory is developed in Chapter III, the resulting ex-
pression for the spatial impulse response of a piston involves a line
integral taken along the periphery of the radiating piston face, rather
than a surface integral. As shown in Chapter III, an asymptotic evaluation
of this line-integral expression shows that there are active points on the
piston's periphery, which radiate sound to the observation point. For
a convex planar piston, which is the case analyzed in Chapter III, these
active points are found to be those points on the piston's periphery for
which the distance to the observation point from the periphery assumes

an extremum value. Thus, the structure of the acoustic radiation field
of a convex planar piston can be described in terms of the concepts that
were put forth by Rubinowicz when analyzing the problem of optical dif-
fraction by a aperture in a plane screen. It should be mentioned that
Kozina and Makarov [45] analyzed the problem of transient acoustic

radiation by a convex planar piston using Schoch's formulation of the

radiation problem. However, the treatment given in Chapter III is more
general than that of these authors, since Kozina and Makarov consider in

their analysis only piston radiators that possess an axis of symmetry
in the plane of the baffle and they only consider observation points

that lie on a plane, normal to the baffle, which passes through this



35

axis of symmetry. The results derived in Chapter III for the field of
a convex planar piston are, therefore, new.

As was mentioned earlier, a new theoretical solution to the
problem of radiation by a finite line source is developed in Chapter IV,
which shows clearly the composite nature of the field that this source
radiates. The structure of this composite field is completely in accord
with that expected on the basis of the Rubinowicz-Maggi theory. Since
the spatial impulse response function of a line source with finite length
can be expressed in a closed form, no integrals need be evaluated in

order to determine the behavior of the radiated field at an observation
point.

In order to experimentally examine boundary-diffraction-wave
phenomena, the spatial impulse response function of an actual line source
was measured and compared to that predicted on the basis of the analysis
developed in Chapter IV. The experiments were conducted in a large water
tank. In the experiments, bursts of pseudorandon noise excited the line
transducer and this source's spatial impulse response function was
determined by crosscorrelating these exciting noisebursts with the
acoustic signals that these bursts caused the line source to radiate.
The rationale behind the use of pseudorandom noise signals for determining
the source's spatial impulse response function, which results from the
application of concepts originating in the statistical theory of communi-
cation, is discussed in Chapter V.

In order to conduct the pertinent radiation experiments using
pseudorandom noise signals, it was necessary to develop a unique acoustic
measurement system, which combines both digital and analog electronic
instrumentation and which utilizes the capabilities of a large digital
computer. This measurement system, the only one of its kind now in
existence, is described in Chapter VI. The experimental measurements of
the spatial impulse response function of a finite line source that were
made using the measurement system are discussed in Chapter VII. Also in
that chapter, the measured spatial impulse response function for the line
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transducer used in the experiments is compared to the theoretically
predicted spatial impulse response function of an ideal line source.
The agreement between theory and experiment is found to be excellent.

The acoustic experiments reported here thus provide a definitive
verification of the conceptual model of radiation fields arising from the
Rubinowicz-Maggi theory. Moreover, they also establish the fact that
this theory is applicable in practical problems. This view, that the
Rubinowicz-Maggi theory is of practical importance, comes with the
realization that it is used, in the work reported here, to analyze the
field radiated by a real transducer. That is, the Rubinowicz-Maggi
radiation theory has been applied in order to understand the behavior of
an acoustic device that is in widespread use at the present time. It is
obvious from this that the theory is not restricted to the analysis of
idealized radiation problems, but is of potential value in analyzing the
fields encountered in a wide variety of real acoustic radiation,
scattering, and diffraction problems.

Two important subjects should also be considered before ending
this introductory chapter. The first of these subjects is that of the
development of the Rubinowicz-Maggi diffraction theory that has taken
place since the publication of Schoch's paper. The second of these
subjects concerns the relationship of the concepts derived from the
Rubinowicz-Maggi theory to the concepts that arise from other models for
radiated or scattered fields. These two subjects will be taken up in
order and discussed briefly in what follows.

Further advances have been made in the theory of the boundary

diffraction wave in recent years. It was known for a long time that
Rubinowicz's formulation of diffraction problems had a peculiar limita-
tion. Using the analytical technique of Rubinowicz, one can only
transform the expression for the total field in a diffraction problem
into the superposition of a geometrical field and a boundary-wave field,
with the boundary-wave field expressed as a line integral along the
diffracting edge, in two particular cases. Either the incident field
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must be a spherical wave or else it must be a plane wave. Since one could
not formulate the theory of boundary diffraction waves analytically for
incident fields of a general nature, the validity of the Rubinowicz-Maggi
model of diffracted fields was questioned [54] by van Kampen.

In 1955, Ingarden [551 attempted to generalize the Rubinowicz-
Maggi theory by employing an eikonal expression for the incident field
and then making certain approximations in the resulting equations.
Ingarden's success with this approach was limited. The decomposition of
the total field in a diffraction problem, with an arbitrary incident
wavefield, could only be accomplished to a certain degree of approximation
using Ingarden's technique. Moreover, even this approximate decomposition
could only be achieved for certain special classes of incident waves.

However, in 1962, Miyamoto and Wolf [56-58] developed a new
general theory of optical boundary-diffraction-wave phenomena. Using the
theory, one can express monochromatic scalar wavefields of a general
nature in terms a new vector potential function that Miyamoto and Wolf
devised. With this vector potential function, Miyamoto and Wolf could
attack the problem of diffraction by an aperture that is illuminated by
an arbitrary incident field. Miyamoto and Wolf found that when an
arbitrary wave field suffers diffraction at an aperture, the total field
on the side of the aperture opposite the light source may be decomposed
into the sum of a primary field and a diffracted field, just as it could
be decomposed in the Rubinowicz-Maggi theory. Moreover, the diffracted
field can be expressed as a line integral of the vector potential
function, taken along the boundary of the diffracting aperture. In view
of the line-integral expression of the diffracted field, Miyamoto and
Wolf consider that the edge of the aperture gives rise to a boundary
diffraction wave like that envisioned in the Rubinowicz-Maggi dif-
fraction model.

In the formulation of Miyamoto and Wolf, the primary-wave
component of the total field does not appear to be an extension of the
incident field into the directly illuminated region beyond the plane of
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the diffracting aperture. Rather, this primary component consists of
the superposition of waves arriving from particular points, called
"feritical points", that lie within the aperture. Thus, in the general
Miyamoto-Wolf formulation, the primary wave is somewhat different from
the geometrical wave arising out of the Rubinowicz-Maggi theory.

If the incident field in a diffraction problem is either that of
a spherical or of a plane wave, then the equations expressing the primary
and boundary-diffraction-wave fields in the formulation of Miyamoto and
Wolf reduce to the equations that Rubinowicz derived for the geometrical
and boundary-wave field components. The Wiyamoto-Wolf formulation is

thus a generalization of the Rubinowicz-Maggi theory. However, in
addition to the difference between the primary-wave field, in the
Mtyamoto-Wolf formulation, and the geometrical wave field, in the
Rubinowicz-Maggi theory, there is also an apparent difference in the
nature of the boundary-diffraction-wave fields in the two cases. One
finds Rubinowicz [59j discussing this point in a tutorial paper.
Rubinowicz regards diffraction as a local effect in his formulation of
diffraction theory. That is, he conceives that the boundary diffraction
wave diverging from each infinitesimal line element on the edge of the
aperture must depend only upon the local behavior of the incident field

at that line element. Thus, Rubinowicz conceives that the boundary
diffraction wave should truly originate on the boundary of the dif-
fracting aperture and not depend upon the properties of the wavefield
elsewhere. On the other hand, the boundary diffraction wave in the
formulation of Miyamoto and Wolf is expressed as the line integral of a
vector potential function taken along the edge of the aperture. But in
order to know the value of this vector potential function at each point
on the aperture edge, one is required to know the value of this function
at each point on that surface that delineates the geometrical shadow
region of the diffracting aperture. Therefore, the properties of
boundary diffraction wave in the lMiyamoto-Wolf formulation depend upon

the behavior of the wavefield at points other than those that lie on the
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boundary of the diffracting aperture. For this reason, Rubinowicz dis-
tinguishes the boundary diffraction wave arising out of the Miyamoto-Wolf
formulation from the type of boundary wave that he considers to be a

realization of the conception of Young. One can find some of the

important ramifications of Miyamoto and Wolf's new formulation of wave-
fields discussed by Rubinowicz [59-63] and by Wolf [64].

The Rubinowicz-Maggi theory and the conventional scalar-wave
diffraction theory, which is based upon the ideas of Fresnel and Kirchhoff,
provide alternative descriptions of optical diffraction phenomena. In
acoustic radiation theory, there are, likewise, alternative descriptions

for radiation-field phenomena. In discussions of such radiation-field

phenomena, the theoretical results of Freedman [65-703 and of Stephanishen
[71-74] are of particular interest and are certainly relevant to the
understanding of the physical basis of the Rubinowicz-Maggi theory.
Relevant, too, is the geometrical diffraction theory of Keller [75].
Unfortunately, however, a comprehensive evaluation of Freedman's,
Stephanishen's, and Keller's results, and of a number of other highly

relevant subjects, such as the theory of transient radiation, is far
beyond the scope of this dissertation and will not be presented here.
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GREEN'S-FUNCTION FORMULATION OF THE SPATIAL AMPULSE

RESPONSE OF A PLANAR ACOUSTIC SOURCE

Consider the planar radiator S0 depicted in Fig. 3. This radiator
is located in the z = 0 plane of a cartesian coordinate system. At time
t = 0, let the radiator be excited with an impulsive velocity that is of
uniform amplitude on its surface. The portion of the z - 0 plane sur-

rounding SO is considered to act as a rigid baffle. If U(rt) is the
acoustic particle velocity at an observation point P, which is located
with respect to the coordinate origin 00 by the vector r, then in the

space z > 0, the velocity potential cp(rt) satisfies the wave equation

[v2 - 2 p2 ] ~r, t) = . (7)

subject to the boundary conditions that

U z(rt) = U 0 6(t) , (8a)

for P on S(:. with U0 a constant, and

UZ(rt) = 0 (8b)

elsewhere on the z = 0 plane. The superscript z in Eqs. (8) denotes the

z component of the particle-velocity vector U - grad p. If written in
terms of the velocity potential, the boundary conditions expressed by

Eqs. (8) become

bep~r,t)
a = U0&(t) , (9a)

for P on S and

40
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Fig. 3--Planar acoustic source
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acp(r,t) O (9b)

elsewhere on the z = 0 plane.

Let a source point in the space z 2 0 be denoted by % . The

Green's function

g(rat rOO: =, 6(t - R,/c) * R2 6(t - R010 (1C)

in which

1 [[(x xO) + (y - yO) + (z - Z )2½ (Ila)

and

R2 =[(x xO) + (y - Y)) + (Z + Z (llb)

satisfies the inhomogeneous wave equation

E 2 I a - g( . jr, t; r0)=-4176T(r - ro)6(t) (12>

and the boundary condition that

7g(r,t; r0 , 0)

on the z0 0 plane. In the expressions above, the quantities x, y

and z are the cartesian components of the vector r that locates the

point P, while the quantities x0, y0, and z0 are the components of the

vector r0 that locates P0. It is also seen from Eqs. (10) and (11),

that if either the point P0 or the point P is located at a finite

distance from the origin, then both g(r,t;r 01O) and its gradient tend

to zero as the other point moves toward infinity.
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The Laplace transform on the time variable t is applied
respectively to Eq. (7) and to Eq. (12), producing the expressions

[V2 - (s/c)2CIpL( rs) = 0 (14)

and

2 2[7 - (s/c) 1g1 (rs; r1Os) = -4T5 (r - ro) . (15)

The following definitions are used for the Laplace-transform pair:

fL(s) i exp(-st)f(t) dt (16a)

and

1 Ji

f(t) =Trj f exp(st)fL (s) ds, (16b)

in which C is so chosen that the path of integration lies to the right
of all singularities in the complex s-plane. If the Laplace transform
Green's function given by Eq. (10) is taken, it is seen that the reci-
procity relation

9 ( r s;r 0 3O) = g L(rO ) s; r, O) (17)

is satisfied when the source point and observation point exchange roles.
Suppose r and rO are interchanged in Eqs. (14) and (15) and that Eq. (14)

is then multiplied by g L(ros;rO) and that Eq. (15) is multiplied by

cpL(ros). If the resulting equations are subtracted and their difference
integrated over the volume of a region 2 that contains both P and Pol
the expression

cpj~ras) = t~f Eg (r 0 s;r,O)vcpL(ro,s)

- cp~LrOs)v2g( (roQs;r)O)] d(ro) (18)0 L~~~~~
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is obtained, in which the zero subscript on the Laplacian operator
indicates that it is to be taken using the components of ro. The

infinitesimal d(r0 ) in Eq. (18) is a volume element in the region Z.
The particular region E throughout which the volume integral is taken
is that between the z0 = 0 plane and a large hemisphere of radius R. with
its center at the origin. The hemisphere is taken in the region where
ZŽ > 0. The surface bounding X is comprised of a hemispherical surface
s* and a circular region S of the z = 0 plane. ft is assumed that R
can be taken so large that the planar radiator So lies entirely within
S . This is always possible if the planar radiator is of finite size.

Except at the point of discontinuity r = rW the transformed
Green's function gL possesses continuous first derivatives within Z and
on its boundary and continuous second derivatives within Z . The

transformed velocity potential pL is, likewise, assumed to be sufficiently
well-behaved that it possesses similar continuity properties. Green's
theorem can therefore be used to convert the volume integral over E
in Eq. (18) into a surface integral over the surface 8' + S. Owing
to the properties of the Green's function, the contribution to the
integral from the surface S becomes negligible for RX sufficiently
large. One then has

cpj rs) T S I BgL (r0 3, s; rO)V0p(r 0 S)

- p~rOS)7vogL(rss;rO)1 - dS', (19)

where the vector dS' is a directed element of the surface S'. This
infinitesimal vector is normal to the z= 0 plane and points outward,,
away from the region X. Owing to the direction of dS', only the za0
component of each gradient contributes to the scalar product in Eq. (19)
and one can thus write Eq. (19) in the form
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Cp~rs) 1 f ( pLr (r
cpL~rss)4TT S IIL 0vs ; z0o 

~2jt [g& r0 ,, sr,O)1

- CpL(ro s) - -(r- -s;rO 3 dS' , (20)
6zO

in which dS' is an elemental area on the zo = 0 plane. In view of the
boundary condition imposed on the Green's function--this condition being
expressed by the Laplace-transformed version of Eq. (13)--the second
term in the integrand of Eq. (20) must vanish everywhere on S'. More-
over, if the boundary conditions imposed on the velocity potential,
which are expressed by Eqs. (9), are likewise transformed and the
results inserted into Eq. (14), then this latter equation becomes

cpL(rs) = - 4ri] 8L(r',s;rO) dS' (21)

with only the surface SO of the planar radiator now contributing to the
surface integral. Finally, by taking the Laplace transform of Eq. (10),
one obtains the result that

-I -IgL(rs;r 0,O) = R1 exp(-sRI/c) + R2 exp(-sR2/c) . (22)

For z0 = 0, the expression in Eq. (22) becomes

SL(rs;roO0) = 2R exp(-sR/c), (23)

where

2 2 2½
R = ((x - x0 ) + (y yO) + z , (24)

If Eq. (23) is inserted into Eq. (21), the result is

Uf J exp(-sR/c) dS, (25)%j (r, s) = - m R dS25
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in which the prime superscript on the elemental area dS has been dropped.

Upon taking the inverse Laplace transform of Eq. (25), one
converts Eq. (25) to

(26)cp(r, t) = - o dS

The pressure in the radiated field is related to the velocity potential
by the expression

p(rt) = p ;o( r, t)
73':

(27)

in which p is the density of the unperturbed fluid. The radiated
pressure field produced when the planar source is given an impulsive
excitation uniformly over its surface is obtained by applying the
definition embodied in Eq. (27) to Eq. (26). This result is expressed

p~rt) = pU0 j'; 5'(t - R/c)dS

0

(28)

Equation (28) gives the spatial impulse response of the planar acoustic
radiator. In the integrand of Eq. (28), the prime denotes the first
derivative of the 5-function with respect to the variable t. The
quantity R is expressed by Eq. (24).



CHAPTER III

RADIATION OF SOUND BY PLANAR PISTONS DESCRIBED

USING THE RUBINOWICZ-MAGGI THEORY

Schoch's Transformation of the Radiated Field
of A Planar Acoustic Source

As was shown in the preceding chapter, the radiated field produced
at an observation point P by a uniformly excited planar source can be
expressed as a surface integral over the area of the radiator. It was
possible for Schoch [42] to transform this surface-integral field repre-
sentation in a simple way and to thereby obtain a new means of expressing
the radiated field of a planar source. Schoch's technique transforms the
surface integral into an expression that incorporates both line integrals
taken along the radiator's periphery and a separate term describing a
propagating beam of plane waves. Schoch's analytic results show that the
acoustic field of the source may be decomposed into interfering components.
One type of component, the boundary diffraction wave, [3] originates at
the periphery of the source and is expressed in terms of line integrals.
The second type of component, the geometrical wave, [3] exists only
within the semi-infinite cylindrical region C that is directly in front
of the planar source. Subsequently it will be shown that the boundary
diffraction wave itself can be considered a composite of several com-
ponents. These boundary-wave components appear to radiate to an
observation point P from virtual sources or ITactive points" [1] located
on the planar radiator's periphery. A virtual source arises whenever an
extremum occurs in the distance between the observation point P and a
peripheral point on the planar source.

In the following discussion, the analysis of Schoch is applied to
determine the spatial impulse response of a planar acoustic source. An
arbitrarily shaped planar source could be treated, but it is sufficient to
consider only the case in which the shape of the planar source is defined
by a smooth closed curve that is everywhere convex, since analysis of this

47
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case exhibits all the essential features of Schoch's method without un-
necessary mathematical complication. The basic geometry of Fig. 3 is
again considered. However, the halfspace z > 0 is separated into two
regions and the radiated field of the source is analyzed separately in
each. The two regions of the halfspace are separated by the semi-infinite
cylindrical surface that has the source's periphery as its directrix and
its generating lines perpendicular to the z = 0 plane. Denote the cylin-
drical region extending outward from the source as C and the remainder of
the z Ž O halfspace, which is outside this cylinder, as d

Consider first the case in which the observation point P is
located in the region C. This situation is depicted in Fig. 4. A per-
pendicular can be erected from some point 01 on the surface of the planar
source to the point P. The point 01 is taken as the origin of a local
cartesian coordinate system whose axes XI and Y1 are respectively parallel

to the axes X and Y in the original Cartesian system. If the location

of any source point Po on the planar radiator is described by the co-
ordinates x1 and y1 with respect to the origin 01, then Eq. (24) becomes

2 2 2½
R = (x1 + Y 1 + z) (29a)

or

R=(r + z52½, (29b)

if plane polar coordinates (rl,O) with an origin at 01 are introduced.
In terms of these polar coordinates, Eq. (25) can be expressed

,s U0 =r -2 f exp(a-sR/c) r dry (30)
=217 ]0f~ fr(O R 1 1

in which r,(9) is the radial coordinate of the point B that lies on the
sourcets periphery at the angular position 9. In view of Eq. (29b), a
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Fig. 4--Planar acoustic source with the observation point in region C
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change of variable from rI to R transforms Eq. (30) into the expression

cpLr~s) _ - J d9J B exp[-sR(9/cJ dR a (31)

in which R is the value of R when rl rB. After performing the integra-
tion involving R, one obtains the result

ej~rXs) = - s { exp(-sz/c) - 2} expE-s(6)f/c3 dO . (32)

The second term within the braces on the right-hand side of Eq. (32) is
seen to be an integral along the periphery of the source that involves

the distance RB from peripheral points to the observation point P. The
first term on the right-hand side of Eq. (32), on the other hand, involves

only the perpendicular distance from the planar source to the observation
point and thus always has the same value on any plane parallel to the

source, so long as P remains within the region C.

Equation (32) expresses the sourcet s radiated velocity potential
when the point P is within the cylindrical region C in front of the source.

Suppose the observation point is in the region C& outside this cylinder.
This situation is depicted in Fig. 5. When a perpendicular to the z = 0
plane is erected so as to pass through P, the point 0l at which this
perpendicular intersects the z = 0 plane lies outside the planar source.

As before, a local Cartesian system is defined with its origin at 1-
The Cartesian coordinates xl and y1 of the source point P0 are again
expressed in terms of the polar coordinates r1 and 8. Now, however,

Eq. (25) takes the form

cpi(rts) _ 02 dO] f 2(e) exp(-sR/c) dr r
TV 0 ~ r3 1 (O) R I I (3

The quantities rB~l and r3B2 in the limits of the innermost integral on

the right-hand side of Eq. (33) are, respectively, the radial coordinates
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Fig. 5--Planar acoustic source with the observation point in region Cc
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of the two points Bl and B2 that lie on the source's periphery at the
angular position 0. The angles 01 and 02 in the limits of the outer
integral on the right-hand side of Eq. (33) define the angular positions
of the two tangents to the periphery of the source that can be drawn
from the point 01. The planar source has been taken to be enclosed by

a smooth convex curve. Therefore, corresponding to any point P in the

region C , there are only two such points as B1 and B2 at any angle
l< c < c NJ and there are only two tangent lines to the source's

boundary that pass through the point 01.

A change of the variable of integration from r 1 to R in the
innermost integral in Eq. (33) is made and the integration over R carried
out. The resulting expression is

CpL s) ITS Jo exp [-sR2(9)/c] - exp[-SRB (0)/cu I dG (34
~~ 1~

The integrand on the right-hand side of Eq. (34) is the difference of
two terms, one term involving %z2(8) and the other RB1j0). If as is
shown in Fig. 5, the line AA' is drawn between the tangent points to the
source's periphery, then the integral of the term in Eq. (34) involving
RB2 is the contribution to the field at P made by radiation from that
portion of the source's periphery that is on the side of AX' most distant
from P. The integral of the term in Eq. (34) involving %g on the

other hand, is the contribution to the field at P radiated by the portion
of the source's periphery on the side of AA' that is nearest P.

Equations (32) and (34) express the radiated field everywhere
in the space z > 0 in terms of the Laplace-transform variable s. The

Laplace transforms in these equations can be inverted so as to obtain
the temporal behavior of the planar source's radiated velocity potential.
One has the expression

cp(r,t) -UOc { U(t - z/c) - ault - RB(O)/c} dO (35a)
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for P in the region C and the expression

o(r,t) = - RB2 (0)/c] - u[t - R1 Bl(e)/c] dO, (35b)

for P in the region C . In Eqs. (35), the quantity u designates the
unit step function

0 s x <0

u(x) = x= O
1, X>O . (36)

The radiated pressure field produced by the planar source can be obtained
from the results expressed in Eqs. (35) and the definition embodied in
Eq. (27). The radiated pressure field is given by the equation

p(r,t) = UIpc j 6(t - z/c) - M- J 8(t - RB(1)/c] d9 (37a)

when the observation point is in the cylindrical region directly in front
of the planar source, and by the equation

p(r,t) = - wr fb[t - RB2 (0)/c - 6[t - %Bj(O)/c] ) d8 (37b)

when P is outside this region. Equations (37) express the spatial impulse
response of a planar acoustic radiator--the same result expressed by
Eq. (26), transformed, however, by the technique of Schoch. In Eqs. (37),

terms that involve integrals of functions of 0 express contributions to
the radiated field made by boundary diffraction waves. The component of

the radiated field that is expressed by Uopc8(t - z/c) in Eq. (37a) is
the geometrical wave, which is seen to be an impulsive plane wave
propagating in a beamlike fashion away from the source.
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Decomposition of the Boundary-Diffraction-Wave Field
of a Planar Acoustic Source by an Asymptotic Evaluation

of the Line Integrals Expressing This Field

It was shown in the previous part of this chapter that when
Schoch's technique is used, the surface integral that expresses the
radiated field of a planar acoustic source can be transformed in such a
way that the resulting equations, describing the field, involve boundary-
diffraction-wave components. These boundary-diffraction-wave components

appear as line-integral terms in the equations that express the source's
radiated field, both in the cylindrical region C directly in front of
the source and in the region Cc outside this cylinder. In each of the

two regions, the composition of the field produced by boundary-diffraction-
wave components is different. In the region C, contributions to the
field at P from the entire periphery interfere constructively. On the
other hand, in the region CC, the boundary-diffraction-wave component

radiated from the portion of the source's periphery on the side of AA'
most distant from P will interfere destructively with the boundary-
diffraction-wave component radiated by that portion of the source's
periphery on the side of AA' that is nearest P. Moreover, as was

stated previously, the boundary diffraction waves themselves can be
decomposed into several components. Each such component appears to

radiate to the observation point P from a virtual source (i.e., active
point) located on the planar radiator's periphery at a point where the
distance between P and the source's periphery takes on an extremum value.

To show the composite nature of the boundary diffraction waves,

one evaluates the line integrals expressing the boundary-diffraction-
wave contributions to the source's radiated field using the method of
stationary phase. The form of the dominant terms in the resulting

asymptotic expressions indicates that boundary-diffraction-wave
generation is associated with critical points [761 on the source's
periphery. in order for an asymptotic technique to yield a useful
approximation of the field in a radiation problem, it is, of course,
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necessary to restrict the range of observation in both space and time.

This restriction implies that localization of boundary-diffraction-wave
radiation to particular source points may not be completely realized in
regions of observation for which the method of stationary phase fails

to provide a good approximation for the boundary-diffraction-wave line
integrals.

The principle of stationary phase [771 permits an asymptotic
evaluation of integrals of the form

b
I(f ;a,b) =Ja *(x)exp[ju1f(x)J dx, (38)

in which f(x) and t(x) are real functions and U - +- . The principle

asserts that the dominant terms in the asymptotic expansion of IQ;ab)

arise from the immediate neighborhood of the end points of the interval
a 5 x S b and from the immediate neighborhoods of the points at which

uf(x) is stationary, that is, the points at which V vanishes. It is
clear also that if u -* -w the dominant terms in I(j;ab) in this case
are just the complex conjugates of those terms obtained for the case
when u - +X. Copson states the following theorem, which holds if f(z)

and *(z) are analytic functions of the complex variable z that are
regular in a simply connected open region containing the interval

a • x - b and if f(z) is real on the real axis: (I) if f(x) has no
stationary points in the interval a 5 x < ,, then as Ua.

I(;;ffO) = [ A)] exp[jk~f($)]

--[JI@(cU) Iexprjiaf(o)] + O(L-2 ); (39a)

(II) if f(x) has one stationary point in the interval C 5 x , namely
at x = a, and if fl1(a) # 0, then as ± - +m
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L(LJ;Ce0 IT *4(a)exp[j.Jf(a) t kjTrr + 0(l 1), (3b)
2u1 §f "(U)JI

with the plus sign in the exponential pertaining to the case in which
f" (a) > 0 and the minus sign pertaining to the case in which f" (a) C 0;

and (III) if f(x) has one stationary point in the interval a x lG,
namely at x = i, and if f''(I) # 0, then as +

=e [2;- f''(3)lJ *(B)exp[Thf(a) ½ITJTI + O(a ) (39c)

with the plus and minus signs in the exponential again pertaining,
respectively, to the cases in which f<'(0) > 0 and f''(a) C 0. In

Eqs. (39), the order symbol is denoted by 0 and the values of a and a
are finite. Since f(z) is regular in a domain containing the interval
a 5 x Eb b, so is V(z). Therefore, f(x) can have only a finite number

of zeros on the interval a • x s b and these zeros will be isolated from

one another. Consequently, it will always be possible to divide the
interval a 5 x < b into a set of closed subintervals at < x 5 S such

that each interval either contains no stationary point of f(x) or else
contains just one stationary point located at the left-hand or the right-
hand end-point. These are the three cases to which Eqs. (39a), (3%),

and (39c), respectively, apply. The case in which f£ and V' vanish

simultaneously cannot occur for a curve with no points of inflection
and will therefore not be considered. It will be noted from Eqs. (39)

that the dominant term in I(u;a,os), owing to an interval containing a
stationary point in f, is 0(4-3), while the dominant term in IQ;aa),
owing to an interval with no stationary point is 0(u,-1). Thus the
contribution of a stationary point to an integral is of greater
importance as 11 - - than the contribution of an end point.

Asymptotic expressions for the line integrals in Eqs. (32) and
(34) can be found by applying Copson's stationary-phase theorem outlined

above. In both Eqs. (32) and (34), one has integrals of the form
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I =f Ob expl-sRB(O)/cl dO (40)
ea

to evaluate. When the observation point P is in the region C, there is
one such integral to evaluate. For this integral, 0 = 0 and 0b = 2¶T.

On the other hand, when P is in the region CC, there are two integrals
of the form of Eq.(40). The first of these integrals expresses the boundary-
diffraction-wave contribution at P owing to the portion of the source's
periphery on the side of AA' most distant from P. (See Fig. 5.) For
this integral, 0 a= l and 0b = 02' The second integral in the case

where P is in Cc expresses the boundary-diffraction-wave contribution
owing to the portion source's periphery on the side of AA' nearest P.
For this integral also, Oa = el and ob = 02

The two cases, the first with P in C and the second with P in CC

will be treated separately. Certain transformations of the form of the
integral in Eq. (40) are necessary, however, in both cases. In both
cases, one has an equation of the form

RB(0) = [z + r2B2½

in which rB is the radial polar coordinate from the point 01 to a point
on the periphery of the source. If primes denote derivatives of
quantities with respect to 0, then, for any fixed z and non-zero value
of r B one has R0(0) = 0 only when r'(0) = 0. Moreover, by writing

rB (6) = f + X(0) (4 2a)

with ) a suitably chosen constant, one can express R,(8) in the form

RB(0) = (z2 + & )½h(6) , (42b)

in which
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h(O) { l1 + [ZX(0) + x2(Q)J/[z2 + o2 }½ . (42c)

Also, one expresses the complex Laplace-transform parameter s in terms

of the wavenumber k, which is a real quantity:

s = jkc . (43)

Since the integrand in Eq. (40) contains no singularities in the right
half of the s-plane, Eq. (43) specifies that the contour of integration
in Eq. (16b) is along the imaginary axis, with an infinitesimal inden-
tation made at s = 0 to account for the s-I factor in Eqs. (32) and

(34). Using the results expressed by Eqs. (42h) and (43), one can write

Eq. (40) in the form

I - JeN exp[-jaih(O)J d, (44)

a
where

=k(z + ) . (45)

Equation (44) has the form of Eq. (38) with i(0) = 1. The parameter ti

given by Eq. (45) is that which is taken to be large when evaluating the
integral in Eq. (44) in asymptotic form.

The stationary points of h(O) in Eq. (44) are the points for
which r;(0) = 0. The periphery of the planar source has earlier been
restricted to be a smooth closed curve that is everywhere convex. The

periphery will be sufficiently smooth for the following analysis if

r''(9) is a continuous function and if there is no arc of finite length
between angles %, and BB on the periphery such that r B() is constant
for all ®Ba • 0 5 ®o. The radial coordinate rB(G) from a point 0 in

the z = 0 plane to a point on the periphery of a smooth convex closed

curve can assume N maximum and N minimum values. This is true whether

the point 01 lies inside the curve, as shown in Fig. 4, or outside it
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as shown in Fig. 5. The form of the curve and the location of the
point 01 determine the value of N. Thus, for example, an ellipse can
have either one maximum and one minimum value (N = 1) or else two

maximum and two minimum values (N = 2) of rB(0). Both the N = 1 and

N = 2 cases are possible for 01 inside as well as for 01 outside the
ellipse. For the ellipse and in the general case as well, the maxima
and minima of rB(O) must alternate, since r(0) is a continuous
function and not constant on any finite arc of the source's periphery.
At the maximum and minimum values of rB(0), the first derivative r'(0)

B ~~~~~~~~B
is zero and the second derivative rBT(0) is alternately negative and
positive.

Consider first the case in which the observation point P is in
the region C, so that °1 lies on the planar source (Fig. 4). Choose
some initial point [rB(O Q), 3l ] on the source's periphery that is
neither at a maximum nor a minimum value of rB (0). Maxima in rB(O) will

occur at angles ( l' 0M2 , M ... 0') and minima at angles

(am 0m2' ' 0mn, ... 0mN). It is possible to choose 2N points 0 n
and bn between the alternating maxima and minima so that

al ml< b ml a2 m2 b2

<0 c <0.. e < 6 an <0 <a 8 < ...
142 an inn bn Mnl

< 0aN < tmN < 0 bN < 'MN < C al + r) , (46)

with the set including the initial point on the periphery at 0al. The
points on the periphery defined by 0 l and by (e 1 + 27) will of course

coincide. The stationary points of the function h(0) in Eq. (44) will
occur at the 2N angles 0 and 0Mn at which hl(0) = 0. A change of

variable is made in the integral appearing in Eq. (44) so that the lower
limit aa of the integral corresponds to the initial point 0 l and so that
the upper limit 0b becomes (O 1 + 2n). The integral is then written as
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the sum of 4N integrals over the angular intervals specified by Eq. (46).

Thus, the first integral will have lower limit 8al and upper limit 0M3

the second integral 'will have lower limit 0ml and upper limit 0bl' and

so on. Each of the 4N integrals is performed over an interval that

contains a single stationary point of h(0) and this stationary point

occurs at one end point of the interval. Each stationary point of

h(0) contributes to two of the 41$ integrals. Using the results of

Copson's theorem embodied in Eqs. (39b) and (39c), one can write the

asymptotic form of Eq. (32) as

U C
cpj~r, s) -- j exp(-sz/c)

N eXP[-sR1(&)/cl

+ exp[ -sR3 ,( Q~) fe (47)

In establishing Eq. (47) in terms of the Laplace-transform parameter a,

rather than in terms of the wavenumber k, the square root of 3 1,-l

that yields a physical (i.e., real) solution in the time domain must be

chosen.

The case for which the observation point P is in the region bc
is slightly more complicated to treat than that for which P is in the

region C. Consider Fig. 6 that depicts the z = 0 plane of Fig. 5. The

origin 0l lies outside the source. The line PA' intersects the source's

periphery at points a and a' and through these points pass the two

tangent lines from Ols which are defined by the respective angles

02and Lil. It will now be proven that on the arc a(BI)a', the radial

coordinate rB (G), and hence the function h(0), has just one extrermum

value- -the minimum at 0 ml.It will also be shown that an extremum

value of r,(0) occurs neither at the point a nor at the point a'. This
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Fig. 6--The z = 0 plane when the observation point is in region cc
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proof is necessary, since in Eq. (34) the boundary-diffraction-wave

contribution from arc a(Bl)a' is of opposite sign to that from are

a'(B2)a. The proof uses the theorem [783 that the polar curve r = r(G)
is concave to the origin if the function D(0) > 0 and convex to it if
D(6) < 0, where

D(9) = r + 2(r) 2 _ rr t (48)

It is assumed that the polar curve may be defined piecewise so that one
always has r > 0. Now for the source's periphery, the function D(G),
vanishes at both 0 = 01 and 0 = O2z since the periphery changes from

convexity to concavity, with respect to the origin 01, at a and at a'.
Thus, if the points a and a' are excluded, then everywhere on the arc

a(BI)a ' the periphery is convex with respect to 01 and

2 2 I 
D(n) = ri + 2(r04) - r31r,, < * (49>

For °1 not on the periphery, one has

rBl + 2(rt l) > 0. (50a)Rl I
Therefore, if Eq. (49) is to hold, it must also be the case that

r q, > r3 2+ 2(r' ) > 0 (50b)

From Eq. (5Gb) it follows that

rB'(e) > 0 (51>

everywhere on a(Bl)a', exclusive of the end points, so that rBi (e) can
have no maximum on this arc. Since maxima and minima must occur

alternately for a continuous non-constant function, the portion of the
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source's periphery defined by arc a(bl)a' has no minimum of rBl(O),

save that at 9m1m

Moreover, neither a maximum nor a minimum of rB(0) can occur

at either the point a or the point a'. For suppose such an extremum

value of rB occurred, for example, at a'. Then one would have

rBA(B) = 0 and, since D(01 ) = 0, one would also have from Eq. (49) the

result that

r2 (01) = r Y(1j)rB] (O1)

or that

r{(01) > 0 ' (52)

since r5 1 (91 ) > 0. Equation (52) implies that if r%1 (e) = 0, then

only a minimum of r B(0) is possible at 0 = al and not a maximum, since

a maximum would require that rB1(91) < 0. However, there is a minimum

of rB (9) at 9 = a 1 and no maximum on the interval 9ml 9 0 < 81.

Therefore, there cannot be a minimum at 0 = 91' since there is no inter-

vening maximum. A similar result can be established for the point a.

Since there is neither a maximum nor a minimum of rBl(0) at a or at a',

it follows that r' # 0 at both these points. This in turn implies
Bi

that rB' > 0 at both a and a', since for 0 = 01 or 0 = 02

51~ ~~~~~~~- 

+ r(r (53)

If r'' > 0 at a and at a' and r''(9) is continuous, then there is some

neighborhood of a and some neighborhood of a' throughout which

rB'(r) > 0 . (54)

In Eq. (54) the subscript on r'' is written as B rather than as B5,
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since points on the arc a'(B2)a also lie in any neighborhood of a or of

at . Since the arc a(BL)a' has no maximum of r3(e), any maxima in r,(O),

therefore, lie on the arc a'(B2)a at a finite angular separation from

both the point a and the point a'.

The analysts in the foregoing two paragraphs establishes the

fact that there is only one stationary point of h(6) between the points

a and a' on the arc a(Bla', regardless of the number of extremum values

of h(9) that occur. One can now proceed in a way similar to that used

to find an asymptotic expression for Eq. (32) in the case in which P was

in the region C. Again suppose there are N maxima and N minima of h(S).

Let the maxima, which all occur on the arc a'(B2)a, be designated by the

angles (";!4l ... , .* 09 ). The minimum at e = 9 occurs on'141 'M2 'Mn MN -~~~~ml
the arc a(BI)a', while the remaining (N - 1) minima occur on the are

a'(B2)a at angles (9@M2M m3> * 9mn, ... 9) . on the are a'(B2)a,

choose (2N - 2) points that lie between the alternating maxima and

minima of h(G). Designate the corresponding (2N - 2) angles by San and

bn. One then has the relation

S < <U, < e < 0 e2 < e c,

2 m an 2n n

<aN < 
5mN < AbN < r M <2 a (55a)

on the arc a'(B2)a. Similarly, on the arc a'(BI)a, one has

el< ml < 2 I(55b)

The integral in Eq. (34) is separated into the sum of an integral

on the arc a'(B2>a and an integral on the are a'(Bla. Each of these

two integrals is cast in the form of Eq. (44) and evaluated using

Copson's theorem. The integral on the arc a'(B2)a is first subdivided
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into the sum of (4N - 2) integrals, each taken on an interval with a

single stationary point of h(O) located at an end point of the interval.

The (4N - 2) intervals are defined by the angles in Eq. (55a). That is,

the first integral has lower limit 01 and upper limit 91, the second

integral has lower limit Yl and upper limit ba2' and so on. Similarly,

the integral on the arc a'(Bl)a is written as the sum of two integrals,

the first with lower limit 01 and upper limit 9m1 and the second with

lower limit 0 l and upper limit e2. Again using the results embodied

in Eqs. (39b) and (39c), one can then write the asymptotic form of

Eq. (34) as

U 0 c c C exp[-sRB2(eMl)lcl

cfL ss) 2 T"s (MI %[;) i½

exp(-sR 1 (Oml)/cJ N+ exp[-sRB2(SmI)/cJ

[ 1( n 2 /Rc i ( ) 3

exp[-sR 5 2( 1Md
+ j-1 , (56)

[: !a9(o~) !]½

c
for the case where P is in the region C

The Laplace transforms in Eqs. (47) and (56) can be inverted.

The velocity potential is then expressed

cp(r,t) - Uoc { u(t - z/c)

-S nlE [ ( :B(::)c ) urt - R%(O)/cl

+ (t -R1)( /Md ) uk - Rt (9)/c]] } ' (57a)
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when the observation point is in the region C, and is expressed

U c(2c)2 f t R B(9M1)fc k
Tfr t3 \ r ( (O'1) I ) uft - RB2(eMl>fcl

-(t- BiQ Mlc ½u[t - %a(eMP)/cl

(~j | 9Mlml )

+= [ (t 1 (0mn u[t -)2()/cl

k
+ (t -%2(9 ) tiVc)( )~an uft -Ru2(G( )/c 3 C (57b)

when the observation point is in the region C . The radiated pressure

field produced by the source is obtained fron Eqs. (57) using the

definition embodied in Eq. (27). For the pressure, one obtains expression

p(r,t) - %pc { 6(t - z/c)
(2i)

N [ ( t - ) t))/c
Z L\t6(9 [t - RB(3()/cl
n=-1 R Qm

- I I R' (9 ) I [t - RB((9)/C] '½ Uft - R(9)/c]

+ (t -RB(eMn)/i)k
5[t - Y&Md/cl

+ ½I 1 RB'(ep)[ [t - RB(9M)/c11½ Uft - RR(QM)/c3]), (58a)
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when the observation point is in the region C, and the expression

U0c(2c)½f t - RB2(0 l)/c i

p(r,t) - - 1%22(OMI) I bft -)

+½ ;%2;1(Mlt - RB2( N)/cI} ui t - RB2(eMl)/c]

t B- %( ) 8[Rt - R (9 )I c]/
ml(91 /Elm

- ½1 RUI1(9rl)i [t -1 R~(9ml )/c] }½ aft -RBl(Ol)/c]

writ- R (9 )fc 
+ | B2R( ) RB2(md)/ c

+ ½R;2(9md)1 [t - RB2(Omn)/c] ½ u[t - 2(emd/c]

(t- RB2(9MN)/c ) ½

+ 2 %( e~)' } 1t-R2(Mn)/'c]

+ ½j1jPR(9 )j [t - RB2(8Mn)/c]Hi½ u[t - R2(eMn)/c] (58b)

when the observation point is in the region C . Equations (58a) and

(58b) are the asymptotic forms of the planar source's spatial impulse

response expressed previously by Eqs. (37a) and (37b).

The asymptotic results produced using the stationary-phase

technique provide a good representation of the planar source's spatial

impulse response when the parameter 4 given by Eq. (45) is large. This

can occur in three situations, which are not mutually exclusive. First,

j becomes large for sufficiently large values of z, provided k i 0.

Thus, the asymptotic expressions describe the source's radiation when
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the observation point P is in the source's farfield, that is, when P is

far from the z = 0 plane. Second, if k 1 0, the quantity u can be large

for any value of z, including z = 0, if the constant Q is sufficiently

large. From Eq. (42a), it is seen that X can be used as a measure of

the average distance from 01 to the source's periphery when P is in C

and can be used as a measure of the average distance from 01 to the

planar source when P is in CC. That is, if °1 is near the center of a

large source, in the case in which P is in C, the constant n will be

large compared to the variable function X(e), which measures the
deviation of the radial coordinate rB(9) from the "yaverage"l radius 01

Similarly, if P is in cc and 0O is far outside the planar source, 0 will

also be large compared to the variable function )((), which in this case

measures the deviation of the radial coordinate rB(O) from the "average"

distance 0 between 01 and the source. For any value of z, therefore,

the parameter u can be made large if the observation point P is such that

the point 011 which is the projection of P on the z = 0 plane, is far

from all points on the source's periphery.

In the foregoing two cases, the parameter ; can be made large by

suitably restricting the position of the observation point in the half-

space z Ž 0. The third case in which the parameter u can be made large

occurs when the wavenumber k is large. This restricts the observation of

the planar source's radiated field in time rather than in space. In

particular, if (z2 + 0 )k is not large, the asymptotic expressions of

Eqs. (57) and Eqs. (58) hold as ft - RBO(Ha)/cl - O+ and as

[t - NO9)/c] l- C+ for each particular value of 0mn and 0,n. That is,

these asymptotic expressions hold near the onset of each of the

boundary-diffraction-wave components that arrive at P from the virtual

sources associated with the stationary points of the function h(e) in

Eq. (44). This conclusion follows from certain of the Tauberian

theorems for transform pairs that connect the asymptotic behavior of a

function in the time domain with that of its transform in the frequency

domain. Thus, if the relation between the time-domain and frequency-

domain behavior of the planar source's radiated field had been formulated
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in terms of a Fourier-transform pair, then the correspondence between the

behavior of the frequency-domain description of the field for large

values of the wavenumber k and the behavior of the time-domain description

of the field near the onset of the boundary-diffraction-wave-component

arrivals would follow directly [79]. By Eq. (43), the behavior of the

frequency-domain description of the source's radiated field for large

values of k is associated with the behavior of PL(rs) for large values

of the Laplace-transform parameter s. Tauberian theorems 180, 813 for

the Laplace transform show that when the asymptotic form of a transform,

which is valid in the s domain for s - - , is inverted, then the

corresponding asymptotic expression in the time domain will be valid

when t - 0+ . Therefore, one can not only use Eqs. (58) to describe the

planar source's spatial impulse response at points far from the source's

periphery, but can use these equations near the source as well, if one

considers only the temporal behavior of each boundary-diffraction-wave

component at times immediately after its onset. As the observation

point P is placed farther from the source's periphery, the time interval,

during which the asymptotic expressions of the source's spatial impulse

response remain valid, becomes longer.

According to Eqs. (58), the boundary-diffraction-wave contributions

to the spatial impulse response of the planar source consist of a series

of discrete arrivals, each of which is associated with an extremum in

the value of the distance between the source's periphery and the observa-

tion point. A radiating point source can therefore be associated with

each such extremum point on the source's periphery. Such point sources

may be called "virtual sources" since the number, position, and strength

of such sources is different for different positions of the observation

point P. Such localized sources appear owing to the destructive inter-

ference and mutual cancellation of boundary-diffraction radiation from

all points on the source's periphery other than those points at which the

phase of the exponential term, in the integrals expressing the boundary-

diffraction-wave field, becomes stationary. It is, in fact, through such

destructive interference and mutual cancellation that all the radiating
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elements, which are distributed over the entire area of the planar

source, generate a radiated field with only two types of components--a

planewave beam directly in front of the source and boundary-diffraction

radiation from the source's periphery.



CHAPTER IV

RADIATED FIELD OF AN ACOUSTIC LINE

SOURCE OF FINITE LENGTH

The radiated field produced by a uniformly excited line source of

finite length can be expressed in closed form. This is in contrast to

the integral expression previously given for the radiated field of a

uniformly excited planar piston source. It is found that the field of

the line source is a composite consisting of two boundary-diffraction-

wave components, which are radiated by the ends of the line, and a

geometrical wave component, which is a spatially finite cylindrical wave

that is coaxial with the line source. An analytical expression for the

radiated field of the finite line source is obtained by solving the

appropriate inhomogeneous wave equation, using integral-transform

techniques. In order to make use of extant tables of integral transforms,

it is convenient to formulate and solve the field problem in terms of

acoustic velocity potential and to obtain the radiated pressure field by

differentiating the velocity-potential solution with respect to time,

using techniques from the theory of distributions.

Consider a line source of length L located on the axis of a

cylindrical coordinate system, as is depicted in Fig. 7. Clearly, there

is axial symmetry, so that the field of the source is independent of the

polar angle a and can be described in terms of the radial and axial

coordinates r and z. Suppose that axial coordinates z, and z2 locate

the end points of the line source and that the line is symmetrically

disposed with respect to the z = 0 plane. Then z, = -%L and z2 = AL .

The spatial impulse response of the line source is sought. Therefore,

one considers that the line source imparts to the fluid surrounding it

an impulsive volume velocity at time t = 0, which has a strength of Q

volume units per unit length per unit time. The impulse is applied to

the fluid uniformly along the length of the line source. If the field

71
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of the line source is described in terms of the velocity potential

cp(rz,t), where U = grad ep, with U the acoustic particle velocity, then

the appropriate wave equation in cylindrical coordinates is

-a I c r 2t
[r r Kr ) ¾Z2 c2 )t 2 J

= - 2E [ u(z - z1) - u(z - z2916(t) * (59)

In Eq. (59), 6(r) and 6(t) designate, respectively, 6-functions of the

radial coordinate and of time, u designates the unit step function,

given by Eq. (36), and c is the soundspeed in the fluid surrounding the

line. Once Eq. (59) is solved, the radiated pressure field p(r,z,t) can

be obtained from the velocity potential p(r,z,t) by means of Eq. (27).

In order to solve Eq. (59), a Laplace transform is taken of ep

with respect to the time t, an exponential Fourier transform is taken of

ep with respect to the axial coordinate z, and a Hankel transform of zero

order is taken of cp with respect to the radial coordinate r. The

following forms of the three transform pairs are adopted, with s, w, and

q the transformed variables corresponding to t, z and r, respectively.

First, for the Laplace transform, one uses the definitions embodied in

Eqs. (16). Second, for the Fourier-transform pair one takes

fF(w) exp(-jwz)f(z) dz , (60a)

- cc

and

f(z) = exp(jwz)fF(w) dw . (6Ob)

- CO

Finally, for the Hankel transform of zero order, one uses

fH(q) =f JO(rq)f(r)r dr (61a)

and
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f(r) =JQ (rq)fH(q)q dq (61b)

0

for the transform pair, in which J0(x) is the zero-order Bessel function

of the first kind with argument x. Using the relationships embodied in

Eqs. (16), (60), and (61), one transforms Eq. (59) and obtains the result

(=,ws) Q[nwfw + b )1 sin(wL)> (62)

with

2 2 2 (3
b =q + (slc) (63)

Two Hankel-transform relationships are necessary in the derivation of

Eq. (62). The first of these [S2] relationships is that

gH(q) = - q2 fH(q) (64a)

if

g(r) = rf- (rf) f(r) . (64b)

Second, if

f(r) = 6(r)/!rl, (65a)

then, by using Eq. (61a), one obtains

f5(q) = ½J 6r J(Jrq) Ir! dr

= ½ J0(0) = ½ . (65b)

It has been assumed when taking Laplace transforms that, for times prior
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to t = 0, both cp(r,z,t) and bcp(r,z,t)/at are zero for all r and z. That

is, no acoustic field is assumed to exist in the fluid prior to the

excitation of the line source at t = 0.

The inverse Laplace, Fourier, and Hankel transforms must now be

taken of Eq. (62), in order to obtain the velocity potential cp(r,z,t)

from the transformed quantity LFH(qws). First, the inverse Fourier

transform is taken using the definition given in Eq. (60b). The

resulting integral can be put in the form of a cosine transform

cprHjqzs) = / sin(tw)cosfwz) dw (66
0 w(w + b)

It will be noted from Eq. (66) that, as expected, CPLH is an even function

of z. Using transform tables [83], one obtains, for the case z > 0, the

result that

cpLH(qzs) = Q(2T1b ) [1 - exp(- kLb)cosh(bz)], (67a)

when 0 < z < ½L, and

H H(qzs) = Q(2tb ) rexp(-bz)sinh(½Lb)l (67b)

when z > 4L. The value Of CLH' given by Eq. (67a), equals that given

by Eq. (67b) when z = ½L. Moreover, when z = 0, Eq. (66) becomes the

sine-transform integral

(qOx) = sin(2w) dw (68)
'PLH 2 f 2 2

'i- 0' w(w + b)

Using transform tables [84], one evaluates the integral in Eq. (68) and

obtains the expression

(q,~s) = Q(2Tb 2) [1 - exp(- ½Lb)]. (69)
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Equation (69) is identical to the expression obtained when the value

z = 0 is substituted into Eq. (67a). Therefore, Eq. (67a) is valid on

the closed interval 0 5 z 5 ½L and the expression for cpLH(q~zJs), given

by Eqs. (67), is valid for the entire interval 0 < z < - . If the

hyperbolic functions in Eqs. (67) are written in terms of exponentials,

one may put these equations in the form

cpL(q,zs) = Q(4rb2 ) > [2exp(-bs0 ) - exp(-bR,) - exp(-b2)1 I (70a)

when 0 5 z • ½L, and

pLH(qzs) = Q(4b2) - [exp(-bl,) - exp(-ba5l ) (7Gb)

when z > NL, in which

0,

½L-z,

i = 0

i= I

i = 2 (71>)

Next, the inverse Hankel transform of Eqs. (70) is taken. In

order to do this, one first considers the Hankel-transform integral

co

fL(rZ's;~i) = b 2 (qr)exp(-bRi)q dq

of the transformed equation

f (qzjs;0.) = b exp(-bR)
LII

Equation (72) may be written as

co

f (r,z~s;~. = -J~2 (/c2rex( db
L Jfsicbl 0b sc)1rep~%

The integral on the right-hand side of Eq. (74) has the form of a Laplace

(72)

(73)

(74)

Ri =
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transform. Again [85] from integral-transform tables, the result

f (r,z,s;o.) - exp[-(s/c)(r2 + 2)I

X c 2 2 2 +
X exp-~)[~ + 2(s/c)(r + $. g f dg (75)

can be obtained. The integral in Eq. (75) has been tabulated [86].

Using this tabulated result,one can express the quantity fL in Eq. (75) as

fL (rzs; .) = - KO[(s/c)(r + 2 ) ], (76)

in which K0(x) is the zero-order modified Bessel function of the third

kind.

Finally, the inverse Laplace transform of Eq. (76) may be taken

[87] to obtain the expression

f(r,z,t;0.) = -
ult - (r + ) /c]

2 - 2 2 2 7V - (r + $.)/c]I
(77)

The results embodied in Eqs. (69) through (77) allow the transformed

version of Eqs. (70) to be written

p(r, z ,t) = - [2ut - r -c)

2 2½k
uit - [r + (½L - z)1/clc

jt2 _ 2 2 
- r + (%"L - a) I/c21½2

Uft - [r2 + (½L + Z) 2I/crI
2- [r2 + (½L + z) 2]/c 2 } 1i

for 0 5 Z •< L and

cp(r zt) = - _Q.
4nT

ut - [r + (kL - z) 2i] 

L It2 - [r2 + (%L - z) 2/c 2l

uft - [r2 + (%ZL + z)2 1½/ci 1

{t2 - [r2 + (L + z2)]/c2l I I

(78a)

(78b)
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for z > it .

The velocity potential radiated by the line source of finite

length is expressed by Eqs. (78) for 0 • z co . It will be noted that

the portion of the solution expressed by Eq. (78a) is an even function

of z, while that expressed by Eq. (78a) is an odd function of z. As

stated previously) the radiated field of the finite line source is

symmetric with respect to the plane z = 0. It can be readily seen1

without repeating the analysis above step-by-step for the case where

z < 0, that a solution that is valid for the entire interval -- < z < c

can be obtained by introducing the sign function.

1, z > O

sgn() = -1, z < : (79)

as a factor multiplying the entire right-hand side of Eq. (78b).

Referring to Eq. (27), it is seen that the velocity potential,

given by Eqs. (78), must be differentiated with respect to time in order

to obtain the acoustic pressure field radiated by the finite line.

Techniques from the theory of distributions must be applied in order to

take the derivative of the singular function u(t - N)(t ) a2) d that

appears in Eqs. (78). These techniques are described in Appendix I.

Using the results of Appendix I, one obtains the following expression for

the acoustic pressure:

p(r,z,t) = - 2[2i,(r, 0, t) - f(r, %L-z, t) - *(r, %Lrz, t>}, (S0a>

for -- L i z•%L and

p(r,z,t) =- - sgnz)[ ½r, L-z, t) - f(r, kL+z, t>] , (80b)

for rzF > kL, where
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[= Psf F __- (r +u)/c 23/2 (81)
L it 2 _ (r2 + 2Vc3/2

In Eq. (81), the notation Psf[ I indicates that the expression within the
brackets is a pseudofunction. The particular pseudofunction

F(x) = Psf [ u(t - I) t (82)

(t 2 -Y 2)3/2 

that appears in Eq. (81) is a singular generalized function that behaves

as the function t(t 2 a2 )3/2 for t > a and is zero for t c a. At

t = a, the generalized function F has a positive-going singularity.

The pressure field, expressed by Eqs. (80a) and (80b), is

continuous across both the plane z = kL and the plane z = -%L. At some

observation point P = (r,z) located between these planes, the pressure

field, which is expressed by Eq. (80a), is comprised of three components.

The first component is a cylindrical wave that is described by the

function

t(r,0,t) = Psf [ (t- 22)3/2 (83)

The distances to the point P from the end of the line source located at

z = %L and from the end located at z = -%L are, respectively,

dl = Er2 + (kL - z) ]2 (84a)

and

22d2 [r + (%L + z)2 . (84b)

Thus, two additional components, which are described, respectively, by

the functions *(r, %L-z, t) and o(r, %L+z, t), arrive at P--one from

each end of the line. These components interfere constructively with
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each other, since they have the same sign in Eq. (8Oa), and destructively

with the cylindrical wave.

Suppose the observation point P approaches one of the planes at
either z = kL or at z -½L. For definiteness, suppose it approaches

the plane z = ½L. Just beyond this plane, the cylindrical component of
the radiated field vanishes. This discontinuous behavior of the component

described by the function t(r,O,t) is, however, offset by the behavior

of the component that is radiated from the end of the line source located

at z = ½L. As can be seen from Eqs. (80), the contribution described by

the function t(r, ½L-z, t) abruptly changes sign as P crosses the plane

z = kL. The discontinuous behavior in the contributions to the radiated

field owing to both t(rQ,t) and 4(r, ½L-z, t) is, therefore, such that

the acoustic pressure remains everywhere continuous.

It is seen from Eq. (80b) that beyond the plane z = kL, the

radiated field consists of two components that arrive from the respective

ends of the line source. The component described by the function

t(r,½L+z, t), which is radiated from the end of the source at z -tL,

is continuous across the plane at z = ½L. It can also be seen from

Eq. (B0b) that, in the region where z > ½L, this component interferes

destructively with the component radiated by the end of the line at

z = ½L. Similar behavior of the radiated field occurs at and beyond the

plane z = -½L. In this case, reverse roles are played by the components

radiated by the points at z = ½L and z -½L on the line. That is, the

component described by the function t(r, ½L+z, t), which is radiated

from the source point at z = -½L, changes sign as P crosses the plane

z = - ½L, while the sign of the component described by t(r, kL-z, t),

which is radiated by the source point at z = kL, remains the same.

Components radiated from the respective ends of the line source again

interfere destructively in the region where z < -%L, just as, they do

in the region where z > ½L.



CHAPTER V

METHODOLOGY USED FOR EXPERIMENTALLY DETERMINING THE

SPATIAL IMPULSE RESPONSE OF A LINE RADIATOR

The theoretical model of the spatial impulse response of a finite

line source, which was derived in Chapter IV, can be experimentally

investigated by measuring the pressure field radiated by an actual line

transducer. The measurement method used is based upon a result from the

statistical theory of communication, namely, that the impulse response

of a linear system can be obtained by applying a white-noise excitation

to the system's input port and then crosscorrelating this input excitation

with the response that it generates at the system's output port. In

order to apply this method to an input-output experiment in which the

linear system is a line transducer and its radiated field, one must also

consider the electromechanical network characterizing internal mechanism

of the line transducer. This is necessary so that the transducer's spatial

impulse response, which is geometrical in origin, can be separated from

the overall system response, which is in part determined by the internal

structure of the line transducer that is used in the experiment.

The line transducer and its radiated field constitute a linear
system with one input port, its electrical terminals, and a infinite

continuum of output terminals, the points r in the fluid surrounding the

transducer. A time-varying electrical signal, the voltage E(t) for

example, applied to the transducer's input port causes a pressure field

p(rt) at the point r in the fluid. At a particular point r, then, the

impulse response of the linear system comprised of the line transducer

and its acoustic field is the pressure p(r,t) produced by the electrical

signal E6(t) applied to the input port, where E is taken so that

J ES(t) dt = I V. (85)
-co

81
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The impulse response p(rt) is not, however, the spatial impulse

response of the line transducer that is to be measured. Rather, it is

the convolution of the spatial impulse response with the impulse response

of the linear electromechanical network that represents the electrically

excited, mechanically vibrating transducer. That is, the input signal

that produces the spatial impulse response of a finite line radiator, as

described by Eqs. (8Oa) and (8Ob), is the impulsive velocity imparted to

the fluid by the source. This impulsive velocity is expressed by the

right-hand side of Eq. (59), which is the wave equation for the radiated

velocity potential. An electrical impulse applied to the input terminals

of a real electroacoustic line transducer will not impart the theoreti-

cally specified impulsive velocity to the fluid, owing to the
characteristics of the electromechanical network that couples the
transducer's electrical terminals to the fluid.

This electromechanical network, if examined in the frequency

domain, will be found to have a complicated multi-resonant response.

Since an impulsive electrical signal contains spectral components at all

frequencies, it will excite all these electromechanical resonances. Such
excitation will therefore cause the source transducer to radiate a complex

pressure field that is greatly dependent upon the characteristics of the
electromechanical network. Those features of the line source's pressure

field that are determined by its spatial impulse response function will

be obscured by the contribution to the source's field that is caused by

the response of the electromechanical network. It is possible however,

to obtain an unobscured picture of the spatial impulse response of a

line transducer by means of an input-output experiment using cross-

correlated noise. The procedure used is an adaptation of a technique

discussed by Lee [881.

In order to see how this technique is applied, however, it is

necessary to first consider in detail the characteristics of the linear

system that is equivalent to the radiating line transducer. This linear

system, comprised the line transducer and its radiated field, is
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depicted in Fig. 8. The impulse response of the system at the point r

in the transducer's field is p(r,t). Suppose the corresponding transfer

function is H(r,v), where v is the frequency. The functions p and H are

related by the Fourier transform pair

pirt) =f H(r je2Tevt d (86a)
-Ox0

f p(rt)e dt (86b)

As mentioned previously, the linear system is comprised, first, of an

electromechanical network, coupling the electrical port of the line

transducer to the fluid. In cascade with this is a second linear system,

which can be called the spatial network, coupling the surface of the line

transducer to the field point r. Let h E(t) and HE(v), respectively, be

the impulse response and transfer function of the electromechanical

network and let p(r,t) and H(r,), respectively, be the impulse response

and transfer function of the spatial network pertinent to the point r .

Note at this juncture that the total linear system has been decomposed in

such a way that the characteristics of the transducer's electromechanical

network does not depend upon the nature of the acoustic field that the

transducer radiates. For the radiating line transducer, one, therefore,

has the relations

p(r,t) = p(r,t) * hE(t) (87)

H(r,v) = H(r,v)H.5(), (88)

with the centered asterisk in Eq. (87) denoting convolution.

Assume that the radiating surface of the line transducer is a

circular cylinder of length L with a small radius aO. Also assume that,

at the frequency v, a harmonic electrical signal E(v) produces a harmonic

velocity distribution Q(v) that has an essentially uniform amplitude over
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the curved portion of this cylinder's surface. Then the function p(r,t)

appearing in Eq. (87) will be the spatial impulse response of the line

transducer and, if a0 is sufficiently small, will also be a good approxi-

mation to the theoretical impulse response of an ideal line source.

Suppose the continuous random-noise voltage eI(t) is used to

excite the linear system's electrical input. Let the pressure p0(r,t)

result at the point r . If e (t) is white noise, its power density

spectrum SI (v) will have a constant value S at all frequencies. The
autocorrelation function RII(T) of eI(t) will then be

R. (T) = S6(T) . (89)

The input-output crosscorrelation function

i f TR 1 (,T =Ii T ,eI(t)p 0 (r,t + Tfl dt (90)

can be expressed

RIo(rT) p(rt)R 11(T - t) dt, (91)

- 00

so that, upon substituting the results of Eq. (89) in Eq. (91), one

obtains the expression

RI0(r, T) =Sp(rm) . (92)

Thus, by crosscorrelating the white-noise transducer input signal eI(t)

with the pressure po(r,t) it produces at the point r , the impulse

response function p(r,t) is obtained. This function is, according to

Eq. (87), the convolution of the spatial impulse response function,

which is sought, with the impulse response of the transducer's electro-

mechanical network.
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In order to extract a good representation of the line transducer's

spatial impulse response function p(r,t) from the convolution with
hE(t)5 the input noise signal e1(t) is bandlimited by means of a filter.

The measured input-output crosscorrelation function R that results,
which can be thought of as a transient signal in the time domain, is

then appropriately modified by convolving it with the impulse response of

a second filter. The rationale behind this procedure is based upon the

assumption that the line transducer's radiated field is generated by the

radial motion of a thin cylindrical shell composed of a ferroelectric

ceramic. Figure 9 shows the electromechanical equivalent circuit [891

I: N LM cM

ZL(t),00 Opp`%. ~~~~~~Z L(-v)
q(t), (v<

Fig. 9--Equivalent circuit of a ferroelectric cylindrical shell

for a radially poled ferroelectric tube that is plated with metal on its

inner and outer curved surfaces. The input voltage el(t), applied

across these plated surfaces, produces the velocity q(t) at the cylinder's

outer curved surface. This surface is in contact with the fluid into

which the transducer radiates. The inner curved surface of the cylinder

is considered to be free, that is, uncoupled from the fluid surrounding

the outside of the cylinder. The values of the circuit elements,

Co, CM, and LM shown in Fig. 9 are
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C0 2nLe33[ - (k31 ) 2/h (93a)

M= a0 s 1 /(27rLh) (93b)

=M 2 rTTaOLhp (93c)

in which aO, h, and L are, respectively, the mean radius, the thickness

and the length of the ceramic tube. The quantities e T k 1, and sE
31' and 31

are, respectively, the dielectric permittivity, coupling constant and

elastic compliance constant for the ceramic material of which the

radially poled cylinder is composed. The coupling constant k I is
31

given in terms of the piezoelectric constant d31 by the relation

k3 31 (s 1133)(3d31=d .s T- (93d)

The quantity p in Eq. (93c) is the ceramic's density. The turns-ratio

N of the equivalent transformer, coupling the electrical and mechanical

parts of the circuit, is

N = 2fLd /sE *(93e)
31 11

The mechanical force f(t) that is produced acts across the radiation

impedance ZL(t), which is the equivalent mechanical impedance owing to

the reaction of the acoustic field on the transducer's radiating surface.

The equivalent circuit shown in Fig. 9 gives a good description of the

electromechanical behavior of the ferroelectric tube below the tube's

lowest circumferential resonance frequency

VRES = (27r) ( C)½ (94)

An actual line transducer incorporating such a ferroelectric

tube as an active element has a more complicated electromechanical
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circuit than the one depicted in Fig. 9. Additional electromechanical

elements are always present. For example, there must be an electrical

input cable to the transducer. Also there must be a structure supporting
the ceramic tube and there must be added material, such as plates capping
each of the tube's ends, which isolate the inside surface of the tube
from the fluid. Such additional elements cause the electromechanical
equivalent circuit representing the complete transducer to be a compli-

cated multiresonant network. However, if the transducer is properly

designed, all additional structural and electrical resonances will occur
at frequencies well above the frequency 'RES given by Eq. (94). For

frequencies sufficiently below vRES then, an equivalent circuit looking
essentially like that in Fig. 9 will adequately represent the actual line
transducer, since the electromechanical behavior of the ferroelectric
cylinder is the dominant factor in this frequency range.

The radiation impedance Z (t) depends upon the behavior of the

transducer's radiated pressure field at the vibrating cylinder's outer

surface. For this reason, ZL should be included in the spatial-network

portion of the overall linear system, rather than be considered as part

of the transducer's electromechanical network. It will be noted that

ZL1 which is a time-dependent quantity, can be regarded as the input

impedance of the spatial network. Robey [90) developed expressions,

which show that both the real and imaginary parts of Z L() the

radiation resistance and reactance in the frequency domain, have a

complicated dependence on v. However complicated the behavior of ZL may

be in the frequency domain, well below VRES its magnitude is always

small compared to the magnitude of the cylinder's mechanical impedance

ZM= WIu + (Iuck) - (95)

where W = 27v. Therefore, below resonance the velocity component Q(v)

through i will be little affected by the presence or absence of ZL in

the circuit. Moreover, as sample calculations made according to

Eqs. (93b) and (93c) will show, for v «c "RES
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(WO -l >> W (96)

Since it is an impulsive velocity that is the input to the

spatial network, one has, for the transfer function HE(v) in Eq. (88),

the expression

HE(v) = Q(v)/E (v, (97)

where the harmonic voltage of amplitude EI at frequency v causes the
harmonic velocity Q on the transducer's surface. Using the equivalent

circuit and Eq. (96), one obtains the result that

HE(v) = j21TvMN (98)

for v << v RES Equation (98) can be written in the form

HE(w) = v/B, (99)

where the constant B can be expressed

B = (j2rra d /h) 1 (100)
0 31

after using Eqs. (93b) and (93e). At frequencies sufficiently below

the circumferential resonance of the radiating cylinder, the transfer

function H(rv) associated with the spatial network's impulse response

can then be expressed as

H(r,v) = BH(r,v)/v , (101)

if one substitutes into Eq. (88) the result given in Eq. (99).

Equation (101) expresses the important result that, for frequencies

sufficiently below resonance, the transfer function associated with the

line transducer's spatial impulse response is proportional to the
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quotient of the transfer function of the total linear system and the

frequency v.

Suppose the white-noise electrical signal eI(t) is passed
through an ideal bandpass filter before being applied to the input of the
line transducer. Then the expression for the line transducer's input
autocorrelation function, which corresponds to Eq. (89), is [911

R. (T) SAt [- A - j cos( 2 TFvMTv) (102)

in which

A= vU - vLG (103a)

and

\M V½VUCO + vLCO) (10h)

where v>Co, E 0 0 and VM are, respectively, the upper cutoff, lower cutoff

and midhand frequencies of the ideal filter's passband. Consider that
the passband of the filter is such that >Co is sufficiently below v RES'

Then Eq. (96) will hold for all frequencies in A. Let the filtered
noise voltage at the transducer's input be eS(t) and let the acoustic
pressure that this produces at the point r be pS(r,t). Suppose this
pressure at r is measured with a small acoustic receiver that has a
uniform sensitivity MR over a frequency band that is wider than A, given
by Eq. (103a). If the pressure p5(r,t) generates the voltage eR(rt)

at the output of this receiver, then the input-output crosscorrelation
function

1 rTRSR(rT) = lim -T e e(t)eR(r,t + T) dt (104)

T-4co J-T

can be expressed by the convolution
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RSR(r,t) = MR p(r,t) * RI (t) I

where RII is now given by Eq. (102). In the frequency domain, the

expression equivalent to Eq. (105) is

SRft(r, v) = MRH(r,1 ) S 11 (\)

=0 

for LCO g V < VUCO

elsewhere.

In Eq. (106) the power density spectra SSR and SII are, respectively,
the Fourier transforms of RSR and RII. If the result given by Eq. (101)
is substituted into Eq. (106), one obtains the result

HU (V) SSR( r, v) = l( r, v),

= 0 3

for VLCO " UCO

elsewhere , (107)

in which E is the transfer function

H (v) = B(MS' - (108)

with B given by Eq. (100). As one can see from a table of Laplace

transforms, the impulse response function hu(t) corresponding to the
transfer function Hu, which is given by Eq. (108), is the step function

where A is the constant

hu(t) = Au(t),

A = (SMRaOd31 h)

(109)

(110)

Therefore in the time domain, one has from Eqs. (107) and (109) the

important result that

(105)

(106)
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p(rt) = Au(t) * RSR(r,t) . (111)

That is, the spatial impulse response of the line transducer is pro-

portional to the convolution of a unit step function with the measured

crosscorrelation function of the bandlimited white-noise voltage, which

is applied to the input port of the transducer, and the voltage produced

in a small receiver by the line transducer's radiated pressure field.

The line transducer's spatial impulse response p(rt) appearing

in Eq. (Ill) is not precisely identical to that quantity appearing in

Eq. (87). Since the bandlimited noise voltage e5(t) contains no

frequency components outside the band A, the impulse response p(r,t)

determined using Eq. (111) will have no such frequency components either.

Thus the impulse response p(rot), when determined using Eq. (I1I), is

that replica of the line transducer's spatial impulse response that would
be obtained if the spatial impulse response were passed through an ideal

bandpass filter identical to the one which filtered the electrical noise
voltage ei(t) to produce es(t). Equation (111) expresses analytically

the statement made earlier: a good approximation of an ideal line

radiator's spatial impulse response can1 be determined experimentally by

first measuring the input-output crosscorrelatioa, function for a
bandlimited white-noise voltage excitation of an actual line transducer

and then modifying this correlation function by convolving it with the

impulse response of a second linear system. The higher the actual line
transducer's resonant frequency, the wider the noise bandwidth A can be

taken and the more clearly should the measured waveform p(rt) reveal

the features of the line source1 s spatial impulse response function.



CHAPTER VI

DESCRIPTION OF THE EXPERIMENTAL SYSTEM

The spatial impulse response of a line transducer was measured

in a series of experiments that were conducted in a large water tank

using bursts of pseudorandom noise. The measurement system used in these

experiments will be discussed in a general way in this chapter. Those

specific aspects of the experimental apparatus, which must be considered

in detail in order to understand particular experimental results, will

be discussed in the next chapter, along with the results themselves.

In this chapter, the line transducer for which the spatial

impulse response was measured will be described first, along with rele-

vant details of its mounting in the tank. Next, the tank and its

experimental electronic suite will be discussed. This will be followed

by a description of the realtime pseudorandom noisebursts used in the

input-output correlation experiments and a discussion of how such noise-

bursts are generated using a computer. Relevant aspects of the computer

programs for processing and analyzing the experimental data will then be

discussed in a general way. Following this, a description of the receiv-

ing hydrophones used to detect the pressure field radiated by the line

transducer will be given. One should mention here that the experimental

system to be discussed utilized a considerable number of commercially

available items. It would have been difficult, indeed, to achieve the

experimental capability needed to measure a line transducer's spatial

impulse response without the availability of such items. From the point

of view of the experimental investigator, then, it is important to

identify the commercial components in the system and to describe their

use. In the interest of clarity, however, such an identification and

description will not be included in the discussion to follow, but will

be found instead in Appendix II.

93
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The line transducer that was used as a source in the spatial-

impulse-response experiments was a Type F36 [92-94] general-purpose line

hydrophone. The configuration of the Type F36 hydrophone, which when

electrically driven can serve as a line source, is shown in Fig. 10.

This figure is taken from Ref. 192]. The actual Type F36 transducer used

in the experiments, however, had a U-shaped wire attached to the plate

at the end opposite the cable, rather than the plug-and-eye assembly

shown in Fig. 10. The active portion of the Type F36 is comprised of an

array of seven lead-zirconate-titanate (Clevite PZT-5) piezoceramic

cylindrical shells, each endcapped with two glass disks. Electrically,
the cylindrical shells are connected in parallel. Each shell has an
outer diameter of 19.0 mm (0.75 in), a wall thickness of 160 mm (0.063 in),
and is 19.0 mm (0.75 in) long. The cylinders are spaced 28.6 m

(1.125 in) between centers. Each glass-disk endcap is 2.29 mm (0.090)

thick. The length of the active portion of the transducer, measured
between the outermost endcap surfaces, is 195.1 mm (7.68 in). Each
piezoceramic cylinder in the active array is supported within a frame-
work of six steel rods by means of a rubber support ring. The entire
assembly is enclosed in a butyl rubber boot that is filled with de-

aerated castor oil. The outer diameter of the boot is 44.5 mm (1.75 in).
The overall length of the Type F36 transducer used, exclusive of the
bushing at the cable end and of the U-shaped wire at the opposite end,

is 266.7 mm (10.5 in), which is slightly larger than the corresponding
dimension of 254.0 mm (10.0 in) shown in Fig. 10.

As a source, the Type F36 is designed to have a useful frequency
range of from 1 to 20 kHz. Figure 11, taken from Ref. (93], shows the

transmitting voltage response of the Type F36 transducer that is used in
the experiments [951. The response curve rises steadily at 12 dB-per-
octave, except in the vicinity of the first electromechanical resonance
of the transducer, which occurs near 24 kHz. The transmitting-voltage-
response calibration, shown in Fig. 11, gives the pressure at one meter
from the Type F36 per volt applied at the end of the 29m (95 ft) cable
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TRANSMITTING VOLTAGE RESPONSE
F36 Transducer Serial 3

Pressure at one meter per volt applied at end of 2.9--m cable

Unbalanced: Pins B and E or black lead and shield grounded
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Fig. 11--Transmitting voltage response of the Type F36 transducer
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attached to the transducer. The attached cable is a neoprene-sheathed,

shielded, twisted pair. The nominal capacitance of the Type F36

transducer with 30.5 m (100 ft) of cable is 600 uF. The DC-resistance

is greater than 200 MO.

If the Type F36 transducer is to be used as a line source in

spatial-impulse-response experiments, it must be mounted so that its

line of axial symmetry can be rotated in the horizontal plane about a

vertical axis that passes through the center of its seven-element active

array. The mounting system that is shown in Fig. 12 was designed and

built for this purpose. The mounting system is comprised of a supporting

section, shown at the top of the figure, an alignment section, shown at

the center, and a transducer-mounting section, shown at the bottom.

Use of this design allows the Type F36 transducer to be supported in a

horizontal position and enables one to rotate and translate the transducer

in the horizontal plane HH'. At the same time, a mounting with the con-

figuration shown will reflect very little of the sound radiated by the

transducer to a measuring receiver that is located in the plane HH'. It

is important to minimize sound reflection from the supporting assembly,

since reflected signals can obscure the structure of the source's spatial

impulse response.

The Type 36 transducer is held at the end of the 31.8 mm (1.25 in)

diameter lower mounting arm, which is 457.2 mi (18.0 in) long. Part of

the center of the arm was cut away and the remaining 152 nu (6 in) portion

of this arm, that end closest to the transducer, was bored out to form a

tube. A slot wide enough to pass the cable of the Type F36 was machined

through one wall of this tubular portion of the arm. The cable bushing

of the Type F36 was inserted into this slotted tube with the transducer

cable passing out through the cut-away part of the arm. The slotted tube

was then tightly compressed over the cable bushing on the Type F36 by

means of strap-type hose clamps (Punch-lock). The other end of the lower

mounting arm has an axial threaded hole that mates with the screw on an
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Fig. 12--Mounting system for the Type F36 transducer
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eyebolt. The eyebolt is welded to the lower end of a vertical cylinder

that is 2.44 m (8 ft) long and 41.4 mm (1.63 in) in diameter. This
cylinder is made from 1.6 mm thick expanded-metal sheet. The expanded
metal has 67 percent open area and the cylinder fabricated from it thus
forms an acoustically transparent support. The lower mounting arm also
will not significantly distort the radiated field of the Type F36 in the
plane HH', except possibly in the direction of the expanded-metal
cylinder, since the diameter of the arm, including the clamps, is less
than that of the Type F36 transducer. Moreover, the arm was bored
through so that no air can remain trapped in the threaded hole that
mates with the eyebolt. Also portions of the arm are machined away so
that there are no flat surfaces normal to its axis to cause reflections
in the direction of the transducer. The upper end of the transducer
mounting assembly is formed from a 3.05 m (10 ft) long tube, 38.1 mm
(1.5 in) in diameter. To the lower end of this tube is welded the upper
support arm. Screw Si passes through a longitudinal slot cut vertically
in the free end of this upper support arm. This screw clamps the alignment
assembly, comprised of the plates PI, P2, and P3 and the four threaded

rods TR, to the support arm at any desired position. Plate P3 is welded
to the expanded-metal cylinder that holds the lower mounting arm and the
Type F36 transducer.

If the axis of the upper 3.05 m tube is vertical, then the
mounting system depicted in Fig. 12 can be aligned so that the Type F36
may be rotated in the plane HH' about its center when the tube is
rotated about its axis. In order to so align the mounting system, a
plumb line is lowered down the axis of the tube. By clamping the align-
ment assembly to the upper support arm in the proper position, by
rotating and tilting the expanded-metal cylinder, using screws S2 and
the threaded rods TR, and by tightening the supporting guy wire, using
the turnbuckle, one can bring the center of the Type F36 directly under
the plumb bob with the axis of the source horizontal. The plane of this
axis is established with a spirit level. Alginment of the mounting system
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was a two-person operation, with one observer at the Type F36 checking

the spirit level and the position of the plumb bob with respect to the
center of the Type F36, while the second worker made the necessary
adjustments in the alignment section. For this reason, the alignment
could not be made in situ. Instead, the system was aligned outside the
water tank in which it is used. It was then carefully transported to the
water tank and then re-mounted in exactly the same position that it had
during the alignment process.

The upper tube of the mounting system is held by the support
block shown in the upper part of Fig. 12. The tube is clamped between
the two collars Cl and C2, which hold it vertical. The end of the support

block is bifurcated. The two arms of this block support collar Cl, with
the tube passing between them. The plate PI, mounted on the support

block, has a V-slot cut into it, which keeps the axis of the tube from
shifting its position when the tube is rotated. Collar C3, clamped to
the tube, has a divided circular scale 3 attached to it. When the tube
is rotated, this scale is used to determine the transducerts angular
orientation. The support block is bolted to an optical-bench carrier.
The carrier may be moved along a two-meter optical bench, which is

mounted above water surface.

Measurements on the Type F36 source were made in a large cylindri-

cal water tank, with the transducer at a depth of approximately 3 m
(10 ft). The water tank used has an inside diameter of 7.09 m (23.25 ft)
and a height of 6.71 m (22.0 ft). The usual water depth in the tank is
approximately 6.2 m. (20.5 ft). The tank is made like a large barrel,

having staves of cypress wood, 10 cm (4 in) thick, bound with steel hoops.
The tank is free-standing in a large warehouse-like building. A utility
building, also free-standing and accessible by a stairway, is built over
the tank. The tank is filled with filtered fresh water from the city
mains. Once the tank is filled, the water is circulated through a filter
and kept chlorinated at a free chlorine level of 0.5 parts per million.

Since the warehouse-like building in which the tank is located is neither
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heated in the winter nor cooled in the summer, the temperature of the

tank water shows seasonal variations. Owing to the mass and heat

capacity of the water volume, 246 kl (65100 gal), however, short-term

fluctuations in the air temperature do not affect the water temperature

in that region of tank in which the Type F36 source and the measuring

receiver are located. During the course of any experiment, the water

temperature is continually measured by lowering a mercury-in-glass

thermometer near the Type F36 and reading the scale by means of a small

telescope that is mounted just above the water surface.

The one-room utility building over the tank houses the transducer-

positioning equipment and the electronic instrumentation used in the

spatial-impulse-response experiments. This instrument room is temperature

controlled. One has access to the water tank through a 1.8 m by 4.7 m

(5.8 ft by 15.3 ft) rectangular well in the floor. Figure 13 shows a

general view of the interior of the instrumentation room. The two-meter

optical bench holding the Type F36 mounting system is seen at the center

of the picture, with the vertical upper tube of the Type F36 mounting

assembly at its center. Other pieces of the experimental apparatus seen

in the picture will be discussed at the appropriate time.

Since the radiated field of the Type F36 is to be measured in a

confined volume of water, the input-output experiments must be done using

pulses or "bursts" of noise having a finite duration so that the effects

produced by sound reflection from the tank walls and bottom and from the

water surface can be separated from those produced by the sound that is

directly radiated to a receiver by the Type F36. Using the dimensions of

the cylindrical tank previously described and a value [961 for the sound-

speed at 200 C of 1482.343 m/s, one can calculate that the maximum

reflection-free pulselength, which can be achieved in a transmission

between a point source and a point receiver in the tank, is 4.2 ms. This

could only be achieved if the source and receiver were coincident at the

center of the tank. Similar calculations show that, for transmission
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Pig. 13--Water-tank laboratory area

between a point source and receiver at separations of I m, 2 m, 3 m, and

4 in, the maximum obtainable reflection-free pulselengths are) respectively,

3.6 ins, 3.1 ins, 2.7 as, and 2.1 ms. The calculations are based upon the
premise that the source and receiver are midway between the water surface

and the tank bottom and that the source and receiver are symmetrically

disposed with respect to the axis of the cylindrical tank. Under all

other circumstances, the maximum pulselengths attainable for these

source-to-receiver separations will be less. They will also be less

when an extended source, such as the Type F36, is used.

An electronic system was developed and installed in the utility
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building above the water tank. This system is capable of generating the

noise pulses or "noisebursts" needed in the spatial-impulse-response

experiments and of digitally recording the waveforms both of the noise
signals supplied to the Type F36, and of the corresponding signals

generated in the receiver by the radiation from this source. The electronic
instrumentation suite used in the spatial-impulse-response experiments
appears at the top right in Fig. 13. A rudimentary block diagram of this

instrumentation suite is depicted in Fig. 14. Five main subsystems

comprise the electronic system. A pulse-generating subsystem accepts

digital data written on magnetic tape. Using the digital data, this sub-

system generates an analog signal that is supplied as an input to the

Type F36 source. The radiated field produced by the Type F36 is detected

by the receiver. The output of the receiver is suitably amplified and

processed by the receiver subsystem, and supplied to the waveform-recording

subsystem.

The waveform-recording subsystem accepts an analog voltage as an

input, digitizes this, and records the digital replica on punched paper

tape. The signal from the receiving subsystem, which is the Type F36

output signal, is digitally recorded in this way. In addition, two kinds
of input signals to the Type F36 are also digitally recorded by means of
this subsystem. These two input signals are voltages proportional,

respectively, to the input voltage and to the input current supplied to
the Type F36. A Hall-effect current-probe device is used to measure the
Type F36 input current. This device produces an output voltage that is

proportional to whatever current flows in the conductor passing through

the probe head.

A digital timing subsystem supplies the proper clock and trigger

signals to the pulse-generating, the receiver, and the waveform-recording

subsystems. All subsystems operate in complete synchronism, since they

are all controlled by a single clock unit that is part of the timing
subsystem. The computer, shown at the top of Fig. 14, is the last of

the five subsystems. The computer generates the digital input data for
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the pulse-generating subsystem and processes the digital data recorded

using the waveform-recording subsystem. All computation is done off-line
by a large computer [97] that is not located in the tank utility room as
are the other four subsystems comprising the instrumentation suite. In

what follows, each of the subsystems will be described in greater detail.

Figure 15 depicts the instrumentation comprising the pulse-
generating subsystem that appears in Fig. 14, the electronic-system block

diagram. Digital replicas of the noisebursts that serve as inputs to the
Type F36 are generated by the computer and stored on the magnetic tape
depicted at the top of Fig. 15. Each noiseburst used in the experiment

is written on the tape as all or part of a 4096-word record, preceded by
an end-of-file mark. The 16-bit words in any record represent, in digital
form, samples of the noiseburst that is an input signal to the Type F36.
After the magnetic tape is loaded on the tape transport, any desired file

can be selected by means of a thumbwheel switch on the buffer/interface

unit. The noiseburst record corresponding to this file is then read into
a 4096-word semiconductor memory in the buffer/interface, under the control
of this latter device. Since any particular noiseburst may be specified

by fewer than 4096 samples, the memory word corresponding to the first

noiseburst sample, as well as the number of words in the complete noise-
burst record, are each set by means of thumbwheel switches on the panel

of the buffer/interface. A train of clock pulses and a train triggering
pulses is also supplied to the buffer/interface. After one enables the

buffer/interface, each triggering pulse causes the digital data stored
in the memory to be transmitted to the digital-to-analog converter. The
clock pulses control the rate at which the 16-bit memory words are read
out from the buffer/interface memory and supplied to the digital-to-

analog converter. Thus, each clock pulse causes one sample of the digit-

ized noiseburst to be transmitted to the digital-to-analog converter
until the complete digitally represented noiseburst has been transmitted.
The transmission begins at the first word selected by the thumbwheel

switch on the buffer/interface panel and terminates when the selected
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number of words have been read from memory. After the last specified
word is read from memory, the buffer/interface remains quiescent until
the next triggering pulse occurs. At this time, the specified number of
words is again transmitted seriatium at the clock frequency to the
digital-to-analog converter, generating again a replica of the particular
noiseburst that is stored in the buffer/interface memory. To produce
some different noiseburst, one inhibits the buffer/interface triggering
and stops the output from the unit. One then reads the file corres-
ponding to the digital replica of this new noiseburst, from the tape on
the transport, into the buffer/interface memory. Once the proper
starting word and proper number of samples for this record have been

selected via the thumbwheel switches, the buffer/interface is again
enabled. The trigger pulses will now repetitively transmit replicas of
the new noiseburst to the digital-to-analog converter.

The digital-to-analog converter accepts the sequential digital
output of the buffer/interface memory and, using this, generates an
analog voltage that replicates the computer-generated noiseburst. Since
the digital-to-analog converter in the pulse-generating subsystem is a
12-bit device, only the 12 most significant of the 16 bits in each buffer/
interface memory word are used in generating an analog replica. The
response characteristics of the digital-to-analog converter limit the
maximum frequency at which a 12-bit digital word can be converted to an
analog voltage. With the converter used, the data can be read from the
buffer/interface memory at a maximum rate of 200 kHz, so that the minimum

permissible interval between the clock pulses supplied to the buffer/
interface is 5 js. The spectrum of an analog noiseburst, produced from
digital samples supplied at 5 [s intervals, can extend to a maximum upper
frequency of 100 kHz, exclusive of the higher-frequency spectral components
that are introduced by the digital-to-analog conversion process itself,
owing to transient effects.

Cascaded filters are used to bandpass-filter the analog output
signals from the digital-to-analog converter. The purpose of these
filters is threefold. First, the high-frequency transient artifacts
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of the digital-to-analog conversion process must be removed from the

noisebursts by lowpass filtering these signals. Second, as a precaution
against the introduction of spurious low-frequency coherent signals at
the 60 Hz powerline frequency and at harmonics of this frequency, the

noisebursts are also highpass filtered. Finally, lowpass filtering is
necessary to ensure that all of the spectral components in the noisebursts,
with frequencies higher than the first electromechanical resonance

frequency of the Type F36 transducer (24 kHz, nominally), have negligibly
small amplitudes.

Signals from the digital-to-analog converter are passed through
three stages of lowpass filtering and one stage of highpass filtering.
The frequency characteristics of each filter stage closely approximates

those of an ideal four-pole Butterworth filter. That is, each stage has

a passband with unity gain and has an attenuation slope of -24 dB-per-
octave, either above or below the cutoff frequency, depending upon

whether one is considering a lowpass or a highpass stage. The cutoff
frequency of the filter stage is that frequency at which the amplitude of
the filter's output voltage, owing to the filter's response character-
istics, is 3 dB less than the amplitude of the filter's input voltage.
The single highpass stage was set to have a cutoff frequency of 950 Hz,
while each of the three lowpass stages has a cutoff frequency of 20 kHz.

Thus, the three cascaded lowpass stages have a combined frequency response
such that the output voltage is down 9 dB with respect to the input
voltage at 20 kHz and have a combined attenuation slope of -72 dB-per-

octave above this frequency.

Preliminary measurements with the experimental system had shown

that it is necessary to have such a sharply cutoff lowpass response

characteristic when filtering the notsebursts that are used as inputs to

the Type F36. The filter characteristics used represent a compromise

between attainment of a maximum input signal bandwidth and simultaneous
rejection of all spectral components near and above the transducer's

first electromechanical resonance frequency. Referring to Eq. (102) of
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the previous chapter, one sees that the peak of the input autocorrelation

function RII becomes wider as the upper cutoff frequency 'UCO diminishes.

Thus, the narrower the spectral bandwidth of the input noiseburst to the

Type F36, the poorer will be the resolution of the features in the

spatial impulse response function. On the other hand, if spectral

components in the noiseburst can electromechanically excite the Type F36

at frequencies higher than that of its first resonance, the consequent

radiation at these high frequencies will obscure the form of the source's

spatial impulse response.

A three-stage cascade filter, with all stages having identical

four-pole Butterworth response characteristics, has an overall response

characteristic given by the expression [98]

V/Vp = 1i + (v/v 3dB) 2pI/ (112)

or by the equivalent expression

(V/V P)dB -(1ON)logIl + (vfv3dB) 2 p] (113)

with the number of stages N here equal to 3 and the number of poles P

here equal to 4. In Eqs. (112) and (113), the quantity V is the filter's

output voltage amplitude at the frequency v and the quantity VP is the

peak output-voltage amplitude that occurs for frequencies within the

filter's passband. The frequency v'3dB pertains to a single stage of the

filter. It is at this frequency that the output-voltage amplitude is

3 dB lower than the amplitude of the peak voltage occurring in the pass-

band of the stage. In the case in question, v is 20 kHz for each stage.

Using Eq. (113), one calculates that the attenuation produced by the

three-stage cascaded filter at 24 kHz, the first electromechanical

resonance frequency, is -21.7 dB. Also, one calculates that the -3 dB

point on the overall frequency response characteristic of the three-stage

filter occurs near 16.9 kHz. Thus, by using the three-stage lowpass
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filter, a sufficient, though modest, rejection of the unwanted higher

spectral components in the noisebursts is attained, without too severely
reducing the bandwidth of the noisebursts.

The output of the filters is passed, via a voltage amplifier, to
the input of a 50 W power amplifier. The gain of the voltage amplifier
is adjusted so that neither the Type F36 transducer nor the receiving
circuits operate in a nonlinear region. The Type F36 is driven directly
from the output of the power amplifier. Measurement demonstrated that
the power amplifier, when directly driving the Type F36, behaved as a
constant-voltage source to within ±0.12 dB over the frequency range from
900 Hz to 24.0 knz. Such a constant-voltage input to the line transducer
was assumed in the analysis previously given in Chapter V.

The input voltage and input current to the Type F36 are measured
at the output terminals of the power amplifier, thus excluding the system
characteristics of the pulse-generating electronics from the linear system
whose impulse response is to be determined. In other words, all modifi-
cations to the digitized noiseburst that originally resides on magnetic
tape, which are introduced by the electronic system that intervenes
between the tape and the transducer's input, are included in the measure-
ment of the transducer's input signal. Since the output voltage of the
power amplifier in the experiments is typically in the range of 50 V to
100 V, however, it is necessary to use a voltage-divider network when
supplying the transducer input voltage to the waveform-recording sub-
system. A high-impedance oscilloscope voltage probe with an attenuation
factor of 10 was found suitable for this purpose.

After the acoustic transmission of a noiseburst between the Type
F36 and the measuring receiver takes place, the receiver's output
voltage is processed by the receiver subsystem that is depicted in
Fig. 16. First, the receiver's output voltage is amplified using a
sensitive voltage amplifier, operated in a differential mode with a
balanced input. Both the differential amplifier circuit within this
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instrument and its power supply are enclosed by a metal shield, separate

from the instrument case and from the circuit chassis. Since separate
chassis, shield, and case terminals are available on the instrument panel,
a properly chosen interconnection of the receiver's output to the amplifier
input by means of a junction box permits spurious ground-loop and cross-
talk signals to be greatly reduced. Typical spurious groundloop and
crosstalk voltages are 35 dB below the voltage generated in the receiver
by the acoustic signal when proper precautions are taken. Amplifier gains
of 40 dB and 60 dB were used, since the receiver output voltage, for
transmission of a given noiseburst, will depend on the angular orienta-
tion of the line-source transducer with respect to the receiver.

Once the receiver output voltage has been amplified, it is passed

to a gate unit. This device is an electronic, normally closed switch
that is periodically opened by a train of externally supplied, rectangular
gating pulses, which originate in the timing subsystem. By properly
setting the occurrence and duration of these gating pulses, that part of
the receiver's output signal that is produced by acoustic reverberation
in the water tank can be blocked. Thus) the gate unit will transmit to
the filter at its output only that part of the received signal that is
due to a direct acoustic transmission between the Type F36 and the
receiver.

A bandpass filter is used in the receiver subsystem to reduce
extraneous noise and to prevent aliasing in the digital waveform-
recording subsystem. Most extraneous system noise occurs at low
frequency. To eliminate these unwanted signals, the received noise-
burst is first passed through a four-pole Butterworth filter stage with
a cutoff frequency of 950 Hz. When observing acoustic transmissions,

using gated sinewaves rather than noisebursts, it was noted that high-
frequency effects also were present near the onset and the termination
of the signals received from the Type F36. Similar high-frequency
effects were also noted near the onset and termination of the input-
current signal to this source. It is possible that such high-frequency
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effects are produced owing to the fact that the source's radiation
impedance is a time-varying parameter. If this is the case, such high-
frequency spectral components will also be present in transmitted
noisebursts. Since the waveform-recording subsystem samples the signals
that it digitizes at 5 us intervals, such high-frequency spectral
components, if not suppressed, could alias the data that this subsystem
digitally records. For this reason, all signals used as inputs to the
waveform-recording subsystem, including the gated receiver output
voltage, are lowpass filtered using a four-pole Butterworth stage with
an upper cutoff frequency of 24 kHz. This filter stage attenuates
spectral components at 100 kHz, the highest allowable signal frequency
when using a 5 as sampling interval, by 49.6 dB and all components of
higher frequency to an even greater degree. Therefore, as a result of
this lowpass filtering, the aliasing introduced into the digitized wave-
forms will be negligibly small.

The waveform-recording subsystem, depicted in Fig. 17, is
comprised of a transient recorder, an interface unit and tape formatter,
and a paper-tape perforator. An input signal to the transient recorder
is sequentially sampled by an internal sample-and-hold circuit, the out-
put of which is digitized by an analog-to-digital converter. Digitized
samples of the input signal are stored sequentially in a 2048-word memory
at the sampling frequency. The sampling frequency of the transient
recorder is controlled by an externally supplied train of pulses occurring
at 5 us intervals. The sampling pulsetrain originates at the timing sub-
system, as does the triggering pulse, which initiates the sampling of the
input signal supplied to the transient recorder. Digitization by the
transient recorder quantizes the input signal amplitude to 8 bits.

Once the digitized signal is stored in the transient recorder's
memory, it can be transmitted asynchronously word-by-word at low speed
to the paper-tape perforator. An interface unit controls this data
transmission. On the paper tape produced by the perforator, resides
a sampled 8-bit digital representation of the input noiseburst supplied
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to the transient recorder. Each experimental noiseburst so digitized
can be labeled on the paper tape with extra characters supplied by a
paper-tape formatting unit.

One additional timing signal is generated by the timing equipment
and transmitted to the waveform-recording subsystem. This timing signal
is a fiducial pulse that is added to each input noiseburst on the signal
baseline prior to the onset of the burst itself. This fiducial pulse has
a width of less than 5 ps and a fixed delay relative to the triggering
pulse that is supplied to the buffer/interface to initiate the output of
that noiseburst. When a noiseburst is digitized by the waveform-recording
subsystem, the fiducial-pulse amplitude is digitized also and stored in
a single word in the transient recorder's memory. If the digital record
of a noiseburst is examined, this fiducial word is easily distinguished
from the digitized record of the noiseburst's baseline that immediately
precedes it and follows it. When many noisebursts are digitized in the
course of an experiment, this fiducial pulse on each record is used to
establish a reference time common to all pulses. It can also be used to
determine that a change has occurred in the sequence of timing pulses that
go from the timing subsystem to the other devices in the system.

The timing subsystem, depicted in Fig. 18, generates the timing
signals needed by all other subsystems. All timing signals are derived
digitally from a single 200 kHz sinewave that is generated by a frequency

synthesizer. The synthesizer derives this highly stable, spectrally pure
sinewave from a crystal-controlled 5 MHz clock. The 200 kHz signal, as

well as any other sinusoidal signal from the synthesizer, is phase-locked
to the 5 MHz reference frequency. Since all timing signals are derived
from one and the same sinusoidal signal, all devices in the system operate
in complete synchronism. The 200 kHz clock pulsetrains, which are
needed by the buffer/interface for transmitting the digital data and by
the transient recorder for sampling the incoming waveforms, are produced
by using the 200 kHz sinewave as the input to the externally synchronized
pulse generator that is labeled PG1 in Fig. 18. From the output of PGI,
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emanates a train of short pulses at 5 us intervals. The duration of each
pulse is determined by the pulse-generator control settings.

All other timing pulses produced by the timing subsystem also
occur repetitively. The repetition rate for all these other pulses is
the same, but there are various delays inserted by the timing subsystem
between corresponding pulses that are transmitted to different parts of
the experimental system. For example, the triggering pulse supplied to
the transient recorder in the waveform-recording subsystem must be
transmitted prior to transmitting the triggering pulse to the buffer/
interface unit in the pulse-generating subsystem. The repetition rate
of all the triggering pulses is ultimately determined by the acoustic
reverberation time in the water tank. After a noiseburst is generated
and radiated by the source, a sufficiently long time must elapse for all
the signals., which are multiply reflected from the boundaries of the
water volume, to decay to an imperceptible amplitude. If the noiseburst
is again generated, by again triggering the buffer/interface, before this
decay is complete, then the reverberant sound field owing to the
previously generated noiseburst will interfere with signal directly
transmitted from the source to the receiver.

The pulse repetition rate was derived digitally from the 200 kHz
sinewave by using the digital delay generator, labeled A in Fig. 18, as
a preset counter. The 200 kHz sinewave is supplied to both the C and T
inputs of the digital delay generator and a divisor N is chosen by means
of thumbwheel switches on its panel. For every N clock pulses input,
the delay generator produces a single pulse at its output terminal 0.
In the experiments, the divisor chosen was N = 100000, so that the pulse
repetition frequency was 2 Hz, or one pulse every 0.5 s.

The output signal from digital delay generator A is transmitted
to the waveform-recording subsystem to serve as a trigger and is also
supplied as a trigger to the T terminals of three other digital delay
generators, which are labeled B, C, and D* in Fig. 18. The 200 kHz
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sinewave is the input to the clock terminals C of these same delay
generators. Each of the two digital delay generators labeled B and C
then produces a pulse that is delayed with respect to the triggering
pulse supplied to the terminal T. The delay obtained using a given delay
unit will be equal to Np clock pulses, with the number N, predetermined
by the setting of the thumbwheel switches on the panel of that delay unit.
Thus can delayed pulsetrains at a 2 Hz repetition rate be supplied by

digital delay generator B, to trigger the pulse-generating subsystem,
and by C, to provide the fiducial pulse to the waveform-recording sub-
system.

The operation of digital delay generator i* is slightly different,
since this unit is internally modified. Rather than generate an output
pulse that is NP clock pulses delayed with respect to its triggering
pulse, this unit produces, instead, a rectangular pulse that is Nc clock

pulses long. This rectangular pulse, with a digitally determined duration,
is then transmitted to pulse generator PG2, which produces a replica pulse
of sufficiently high voltage to drive the gate unit in the receiver sub-
system.

It was mentioned earlier that a large computer is also a sub-
system of the experimental instrumentation suite. Both the pulse-generating
subsystem and the waveform-recording subsystem communicate with the

computer--the former by means of magnetic tape and the latter by means

of punched paper tape. The computer's most important task is to perform
the correlation-function computations that are needed in order to obtain
the spatial impulse response function of the Type F36 source. Before
discussing such correlation computations, however, it is appropriate to
consider, first, the computer's other function, namely, generation of the
digital pseudorandom noisebursts that are the input signals to the pulse-
generating subsystem.

A broadband, white-noise process is to be simulated by an equiva-
lent pseudorandom process. If a true random-noise signal were used to
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form the requisite noisebursts, such noise would be required to exhibit a

constant power density spectrum over a frequency band encompassing the

operational bandwidth of the Type F36 transducer. If this true random

noise were obtained from an electronic random-noise generator, the

probability density function of its amplitude would be, approximately,

Gaussian. Moreover, if the noise generator were properly designed,

its output would be stationary in the sense that this probability density

function, as well as the power density spectrum of the noise, would not

change with time. The experiments to be reported here require a set of

pseudorandom, digitally generated noisebursts that are indistinguishable

from bursts of true random noise, such as would be created by gating the

output of a broadband electronic noise generator. Pseudorandom noise-
bursts, which simulate a gated, broadband, white-noise, normal process

can be digitally generated on the basis of the following theoretical ideas.

Suppose one considers the stochastic process that is described by

the ensemble of functions X(t,Q), in which t denotes the time and in which

the parameter C specifies the outcomes, or realizations, of that con-

ceptual random experiment associated with the stochastic process. It

can be shown that, if the process is stationary in the strict sense, and

if the random variable Xi X X(tj,C), which is defined by fixing the time
at t ti, has zero mean and, moreover, if, for any two fixed times tj

and t2 separated by non-zero interval T, the random variables Xl = X(tlK)

and X2 = X(t2,C) are independent, then the random process X(t,C) has a

weighted 6-function as its autocorrelation function. Consequently, the

process also has a constant power density spectrum at all frequencies and

is therefore a white-noise process. If, in addition, the random variable

XI, defined at any fixed time t1, has a zero-mean Gaussian probability

density function, then the white-noise process will also be normal. Since

infinite total power is required in any process that possesses a spectral

density function that is constant at all frequencies, a white-noise process

is physically unrealizable. However a bandlimited white-noise Gaussian

process, of the kind discussed in the previous chapter, can be numerically

realized using the following method.
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Consider first that the random process X(t,C) described above is
ergodic so that each realization of the process embodies the statistical
properties of the ensemble. Imagine that any realization, the one for
which C = C say, has been passed through an ideal linear lowpass filter

with an upper cutoff frequency v U. Then the temporal function tito
emanating from the output of this filter is such that its spectral density
function Sjj(v) will have a constant value S at all frequencies v that do
not exceed v , and will be zero at frequencies greater than vA. If the
autocorrelation function Aj of X(t,%O) is computed as the temporal average

rT A

R (T) = lim jZj X(tC%)X(t + TO) dt, (114)

then a result similar to Eq. (102) will be obtained, namely

M(T) = S(2mrr) lsin(27rvT).

Now, when a realization of a normal process is applied as an input signal
to a linear system, the resulting output signal will be a realization of
a normal process. Thus, X(tC%) is a realization of a normal process and,

moreover, X has a zero mean value, since the mean of X(t,O) was zero.
Suppose one considers the output process X(t,Q,. This process is the
ensemble of temporal functions obtained by filtering each member of the
ensemble that comprises the process X(t,C) with a lowpass filter identical
to that used to obtain the realization X(t,%) from X(ti). If the

random variables Xi X i(t2,) and X = i(tl + TC) are examined, it is

no longer true in general that X1 and X:> are independent whenever 7 i 0.
However, suppose one samples the realization X(t,%.) at intervals of At,
where

LT = ( 2 v) - (116)

The sample values thus obtained,
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X, (co) =xn , ) } fx(nt, C0) } (117)

with (n = -Ct .. -2, -1, 0, 1, 2, .,. o), form a sequence of independent
Gaussian random numbers Xns having zero mean. Several factors bring about
this situation. First, the process X(t,C) is assumed to be ergodic, in
which case, its ensemble statistical properties are embodied in the
temporal function that is the realization Co. Second, the temporal
function X(t,co), which is the filtered replica of X(t,CO), contains no
spectral component with a frequency greater than U 80so that, when it is
sampled according to Eq. (116) at the Nyquist frequency 2vY the samples
obtained are independent. Finally, the lowpass filtering operation does
not change the Gaussian character of the process X(t,O .

The above considerations form the basis of digitally simulating
a bandlimited, Gaussian, white-noise process. If the sequence i of
(2N + 1) independent, normally distributed random numbers

X (N,i) = {Xi}

where (n = -N, -N+l, ... -1, 0, 1, 2, ... N-l, N), is generated by some

means, then the resulting (2N + l) values X1 can be regarded as a
n

sequential sample (with "sample" used here in the statistical sense to
denote a set of elements drawn from a population) of size (2N + 1) drawn
from one realization, the realization a 0 say, of the sampled process
Xs described in Eq. (117). As N increases without bound, the set of
values xi will approach the sampled representation X" of the realization

n as

X(t,% ) of the bandlimited, Gaussian, white-noise process X(t,C).
Numerically, of course, only a finite number of sequences X8(N,i), where
(i = 1, 2, ... I) and where N can depend on i, can be generated.

Each of these I sequences can be regarded in two ways, since an

ergodic process is being simulated. On the one hand, the i-th and the
J-th such sequence can be regarded as being two samples drawn from

different realizations of X,(C), the :i-th realization and the J-th
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realization say. On the other hand, the i-th and j-th sequences way be

thought of as being two disjoint samples drawn from a single realization

of XK(c), the G0-th realization say. That is, the sequence JX I could
represent the sequentially taken sample {X(ntt,%,)} of XS(C0), with
(n = n, n2, ... nI) and the sequence could represent the sequentially
taken sample 1X(nAt,C,)}, with (n = nj, n÷ 1, .. n eYe) and with the integer

J greater than the integer I. Both of these equivalent alternate inter-
pretations are useful from an experimental standpoint.

A sequence {Xil of 2W independent random numbers, which is equiva-

lent to a set drawn from a population with the Gaussian probability density
function

24 - 2 2(19
P(X) = (2TM x)pexpl-(X /(Za f

in which 'q is the mean and a the variance of the population, can be
generated from a sequence JU1 of ZN independent random numbers that are

n
drawn from. a population with the rectangular density function

P(U) 0O elsewhere. (120)

The method used [99,1O0} to so generate the sequence ii l, transforms
-n

each pair of independent random numbers U1 and U2, from the population

with the rectangular density function given by Eq. (120), into the pair

of independent Gaussian random numbers X and X2 by means of the relations

2-XI = (-Za In U 1 )cos(2flU 2 ) + TI (1Zla>

and

K2 = (-2a in -J sin(2Tu ) + ¶3 (1Zlb)

That Xl and X2 are independent Gaussian random variables, each apparently
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drawn from a population with a density function given by Eq. (119),
follows [101] from the transformation relation

P(Xl3X2 ) - JI P(UlU 2 ) (122)

between the joint probability density function P(X1 ,X2 ) of X1 and X2 and
the joint probability density function P(UT1,U2) of U1 and U2. In Eq.
(122), the quantity J is the Jacobian of the transformation inverse to
that given by Eqs. (121), viz

U1 = exp{-[(Xl - i)
2 + (X2 ri)2 /(2a 5 } (123a)

and

-1U2 = (2r) arctan[(X2 - ll - r)] . (123b)

One readily calculates the pertinent Jacobian to be

J = (u 1 /,ax1)O(au2/ x2) - Oul POU2/ 1)

= -(2rr2 ) exp[(X 1 - / (2a2 )]exp[(iX 2 - Ti) f(25 21 (124)

so that, from Eq. (122), the relation

2 42 - 2 2 2 2 2
P(XJX 2) = (2TTr )exp[(XI - Tr) /(2a j - TI) /(2a )]

P(X1 )P(X 2 ) (125)

is obtained, which precisely enounces X1 and X2 to be independent Gaussian
random variables. Note that the desired mean value T1 and variance cr ,
which one wishes to obtain in the population from which the sequence
kxi} is drawn, may be inserted in the transformation that is given by
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Eqs. (121). For simulating the normal white-noise process described

previously, it is required that yr = 0. The variance a is then a measure
of the total power in the simulated process. As will be described
subsequently, this power level is imposed so as to optimize certain
characteristics of the experimental noisebursts.

Instead of generating a sequence of Gaussian random numbers }e S
n

from the random sequence fU'} with a rectangular distribution, a pseudo-
n

random sequence fx ' is generated from a pseudorandom sequence tunh,
na n

using pairs of values u1 and u2 in place of U1 and U2 in Eqs. (121), to

generate pairs of values xl and x2, instead of i. and X2. If the pseudo-
random sequence {u j has "statistical" properties that mimic those of the
sample {1f1, then the pseudorandom sequence tx3J will be indistinguishable

in a statistical sense from the Gaussian random sequence *Xn Well-

known digital computer techniques [102-1041 are available by which

sequences of rectangularly distributed pseudorandom numbers can be

computed. Although such sequences are repetitive, they have such a long

repetition period that computed samples, even those consisting of as many
as 106 values 1105] behave in a random fashion. On the computer [1061

used, pseudorandom numbers with the rectangular density function given by
Eq. (120) were generated using a program that calls upon a system library

function. This system library function uses an algorithm of the multi-
plicative congruential type. The algorithm meets the criteria set forth
for generating pseudorandom sequences of maximal length. It also incor-
porates a modification introduced in order to avoid the occurrences of

abnormally short periods in the least significant bits of the generated
values.

From each sequence of Gaussian pseudorandom numbers Ki that is
generated, a pseudorandom experimental noiseburst is created. The

experimental requirements are imposed upon the sequences. Thus, a typical
experiment might require 16 distinct noisebursts, each 2.8 ms in duration.
Since the sampling rate in the pulse-generating subsystem is 200 kflz, each
of the 16 sequences {x j in this case will consist of 561 Gaussian
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pseudorandom numbers. Each such sequence will be generated from one of
16 distinct sets of 562 rectangularly distributed, computer-generated
pseudorandom numbers. As has been stated, the specified mean value in
Eqs. (121) must be zero. Also, the input signal supplied to the digital-
to-analog converter in the experimental electronic system must be in the
range between -1.0 and +1.0 V. Therefore, the numbers in any sequence
1x' }must not exceed unity in magnitude. This would certainly be the
case for most sequences of 561 values, if the standard deviation C in
Eqs. (121) was made sufficiently small. However if a is made small, the

full 12-bit word-length of the digital-to-analog converter will not be
efficiently used, since most of the digital values of the xi would them-

n
selves be small and would therefore only require a few bits to represent
them. The only values of x requiring the full 12-bit word-length of the
digital-to-analog converter would then be the infrequently encountered
"outliers"--improbable positive or negative values of large magnitude
that are accounted for by the tails of the Gaussian probability density
function. In order to effectively use the full 12-bit range of the
digital-to-analog converter, the standard deviation was taken to be 0.25 V,
so that the ±1.0 V full range is b4a.

The outliers, those values of x which exceed in magnitude the
n

+1.0 V digital-to-analog converter input range, are disposed of by
discarding any sequences 1xJ} that contain them. In generating 16 pseudo-
random noisebursts, each with 561 values, it was found that only one set
had to be rejected owing to the presence of outliers. Thus, 17 sets
fx'} had to be generated in order to obtain 16 sets of 561 values thatn
include no outliers. A further numerical artifice is also used to
tailor the pseudorandom sequences fxJ} to the experimental requirements.
In general, any particular sequence of 561 Gaussian pseudorandom numbers
will have neither a zero mean nor a standard deviation of precisely 0.25,
since each sequence is but one sample drawn from a population having these
statistical characteristics in the aggregate. However, one may numerically
impose these characteristics, a zero mean and a standard deviation of
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0.25, on each of the 16 sequences by means of a simple linear transforma-

tion. Since a linear transformation will not alter the Gaussian character
of any sequence {x }, all of the 16 experimental sequences can be required

to have exactly a zero mean value and contain exactly the same total
energy by using this artifice.

Once each of the sets of 561 Gaussian pseudorandom numbers are

generated and transformed, each value xi is quantized by rounding to a
16-bit integer with 12 significant bits in order to be compatible with
the digital-to-analog converter's word length. 'These 16-bit digital
words are then written on magnetic tape in a format acceptable to the
input of the buffer/interface unit in the pulse-generating subsystem.
When read from the memory of the buffer/interface unit at a 200 kHz

clock rate, a 561-word record gives rise to a unique pseudorandom noise-
burst, 2.8 ms in duration, which has an average value of zero and a fixed,

predetermined total energy. The energy in the noisebursts, on the average,
will be distributed uniformly in the frequency band from 0 to 100 kiz.

Figure 19 depicts the signals resulting from one such pseudo-
random noiseburst. The noiseburst at the top of the figure is the
voltage that is applied to the input of the Type F36 source. This signal
is the noiseburst as it appears after it has been passed through the
three cascaded Butterworth lbwpass filter stages, each with the upper
cutoff frequency of 20 kHz, and through the single highpass Butterworth
stage with the 950 Hz lower cutoff frequency. The center and bottom

noisebursts shown in Fig. 19 are the voltages generated at a receiver's
output owing to acoustic transmissions by the Type F36 that are generated
by the noiseburst depicted at the top of the figure. The received noise-

burst at the center of Fig. 19 corresponds to an azimuth angle of

0 = 2700. This is a source and receiver orientation in which the receiver

is normal to the axis of cylindrical symmetry of the Type F36, i.e.,
"broadside" to the line source. The noiseburst at the bottom of Fig. 19
is generated at an azimuth angle 0 equal to 1800, a situation in which

the receiver is on the axis of symmetry of the Type F36, i.e., the
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receiver is measuring the "endfire" signal from the source. Both received

noisebursts shown in Fig. 19 were measured with the center of the receiver
1.32 m from the center of the Type F36. The data used to plot the
receiver-voltage signals shown were taken at the output of the receiver
subsystem. Thus, received voltages were amplified, filtered, and gated
to remove reverberation. The ordinate scales on the curves, however, refer
to the actual voltages at the output of the measuring receiver. The high-
frequency spectral components in two received noisebursts have, of course,
been emphasized, owing to the electromechanical characteristics of the
Type F36. This effect, described by Eq. (98>, was previously discussed.

All three curves in Fig. 19 were plotted from data quantized to eight
bits and recorded by the waveform-digitizing subsystem.

Once noisebursts, such as those shown in Fig. 19, have been re-

corded in digital form on punched paper tape, correlation functions can be

computed. As mentioned previously, correlation functions are computed
using a large digital computer. However, before such computations can be

accomplished, several operations must be performed in order to put the
punched-paper-tape data in a form suitable for processing by the large
computer. First, the punched-paper-tape data must be rewritten on magnetic
tape before the large computer can work with them, since the large computer
has a very limited and inefficient direct paper-tape reading capability.
This paper-tape to magnetic-tape translation is performed with a small
auxiliary computer [107], using a specially written assembly-language
program. The magnetic-tape recorded data thus created is next rewritten
on a second magnetic tape in a translated form, since the auxiliary

computer copies paper-tape data to magnetic tape in unformatted records.
At this stage, the noiseburst record can be examined and errors in the
paper-tape performation operation can be corrected. Finally, the
correctly translated noiseburst data records are rewritten on magnetic
tape yet a third time so that an ancillary record containing the
experimental parameters pertinent to the particular noiseburst can be
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appended to each noiseburst data record. Correlation functions are

computed from the noiseburst data records on this magnetic tape.

The noisebursts are considered as transient signals when computing

input-output crosscorrelation functions. Consider the two noiseburst

records that are represented in Fig. 20. Each of the two records consist

of the 2048 words that were the contents of the transient recorder's

memory at the time when that noiseburst was digitized. Let the 2048-word

sequence Y fy 1 be the digital record of a noiseburst voltage that was

input to the Type F36 and let the 2048-word sequence Zi fz be the
n

record of the corresponding noiseburst voltage that was produced at the

output of the measuring receiver. At word nf in both records, the fiducial

pulse appears. At word nI in record Y \ the digitization of the Type F36
input signal begins. Suppose this digitized noiseburst consists of N1

words. Then the actual input noiseburst terminates on word (n1 + N1 - 1)

as shown. Except for word nf then, the portion of YP prior to n1 and

after word (n1 - N1 - 1) represents a digitization of the input signal
baseline, which is set to be zero during the initial processing of the

data records. Similarly, the output record owing to the digitization of

the received acoustic signal begins at word n2 of record Zi and terminates

at word (n2 + N2 - 1), if the received noiseburst consists of N2 words.

Again, except for word nfP the remainder of the record Zi is the baseline,
which is set to be zero. Owing to the propagation time of the noiseburst
from the Type F36 to the receiver, one finds, in general, that n2 a nV
Moreover, owing to the spatial extension of the source, one also finds,

in general, that Nj2 > N1 The input-output crosscorrelation function

Rz(T) at the discrete values of the delay parameter

¶ = mAt, (126)

where (m= -x, ... -2, -1, 0, 1, 2, ... a) and where At is the sampling

interval (5 uas in the experiments), is given by the expression
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with a = 1 or a= 2. Note in Eq. (127) that it is the output signal Zi
that is fixed in time, while the input signal Y is progressively shifted
by discrete values of the delay parameter in the direction of increasing T.

In addition to computing input-output crosscorrelation functions
in the absolute form that is expressed by Eqs. (127), normalized cross-
correlation functions Py33(mAt) are also computed. Normalized
crosscorrelation functions are given by the expression

py1 (mAt) = R:z(mAt)/M 

in which

3 = At I (4i)2 11 (Z j 21K~~Z tE I =n 
1-n Zn2

0,

RyZ (mAt)=

0,

in which

(127)

(128)

½
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ijSince the values of pyZ(mAt) lie between plus and minus one for all values
of m, the normalized crosscorrelation function, given by Eq. (129), is
largely independent of such experimental parameters as electrical signal
amplitudes, amplifier gain settings and the like. This independence makes
the normalized crosscorrelation function useful when studying the structure
of the spatial impulse response of the Type F36. On the other hand, in
order to determine the effect on the spatial impulse response that is
produced by changing a particular experimental parameter, such as the

source-to-receiver distance, it is necessary to use the absolute form of
the input-output crosscorrelation function that is given by Eqs. (127).

In the preceeding chapter, which discusses the experimental
methodology, the spatial impulse response function of the Type F36 is

described in terms of the crosscorrelation function of input and output

noise signals that are both of infinite duration, rather than in terms

of the crosscorrelation function of two noisebursts of finite duration,
such as is expressed either by Eq. (127) or by Eq. (129). Any experi-

mental input-output crosscorrelation function must, of course, be
determined using noise signal records that are of finite duration. When
a pair of records of finite duration are crosscorrelated, each cross-
correlation function obtained is a statistical entity--being one estimate
of that crosscorrelation that would be obtained if two infinite records
could be crosscorrelated. That is, each pair of noise records of finite
duration can be regarded as a paired sample taken from a corresponding

pair of records of infinite duration. A characteristic of the population
(with the characteristic here being the crosscorrelation function of two
infinite ntoise-signal records) that is determined from one paired sample
(with the paired sample here being a finite number of pairs of successive
values taken from each of the two infinitely long noise records) will

show a statistical variation. Different paired samples, that is,
different pairs of finite-duration noise records, will yield different

crosseorrelation functions. If a paired sample is large, i.e., if it is
comprised of a large number of independent pairs of noise-signal sample
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values, then the crosscorrelation function obtained from that one finite-
duration paired sample will accurately estimate the crosscorrelation
function of the two corresponding infinite records. Conceptually then,
one could achieve an estimate of an input-output crosscorrelation function,
and hence of the spatial impulse response function of the Type F36 source,
with any degree of accuracy desired simply by using one pair of sufficiently
long records of input and output noise signals.

It is, however, the size of the water tank used in the experiments
that will determine the maximum possible duration of the noise signal
records that can be employed when determining crosscorrelation functions.
Thus, one is not able to improve the accuracy with which the spatial
impulse response of the Type F36 source is estimated to any degree desired
simply by increasing the duration of the noisebursts that are used. Highly
accurate crosscorrelation-function estimates can be achieved, however,
by using the following method, which is completely equivalent to increasing
the duration of the noisebursts used. Here it is assumed that one improves
the accuracy of an estimate when he reduces its variance.

This method is based upon the fact that any set of I pseudorandom
input noisebursts and the corresponding set of I pseudorandom output noise-
bursts may be regarded either as being I paired samples drawn from I
distinct pairs noise signal records, with each signal record being of
infinite duration, or else the set may be regarded as I disjoint paired
samples taken at different times from a single pair of noise signal
records. As stated previously, this dual interpretation follows from the
fact that an ergodic stochastic process is being simulated. Suppose,
then, that one has I digital records Yi _ fi} of input noisebursts and
the corresponding I digital records Z = nzI of output noisebursts,

n
with (i = 1,2, ... I). According to the previous discussion, the cross-
correlation function R'4(mAt), for one particular value of i, is one
estimate of the crosscorrelation function of a pair of infinite noise
records Y and Z from which the respective samples Yi and Zi are drawn.

Since I such sample pairs are available, a more accurate estimate
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RyZ(m t) of this correlation function is obtained as the average

Ry,(mAt) = I, E 4zmAtt. (131)

The normalized form of this equation is

WOm~tj = L E Xz(ii (132)
PyZ I ZPYZmt)

Suppose that each of the input noisebursts Y 'is represented by N1 values.
iIThen each of the corresponding output noisebursts, Z will be represented

by N2 values. The crosscorrelation-function estimate, expressed by

Eq. (131), will then be equivalent [108J to crosscorrelating an input
noiseburst comprised of IN1 values and an output noiseburst comprised of

IN2 values. In other words, the input-output crosscorrelation function,
which is obtained by averaging the I input-output crosscorrelation

functions that result from I input noisebursts of duration T, is equiva-
lent to the input-output crosscorrelatlon that would be obtained if an
input noiseburst of duration IT were used. Thus, by averaging suf-
ficiently many of the input-output crosscorrelation functions that are
generated using short noisebursts, a crosscorrelation function can be
generated that is equivalent to the correlation function resulting from
use of an arbitrarily long input noiseburst. Consequently, the restriction,
which is placed on the signal record length, and thereby on correlation-

function estimation accuracy, by the confined volume in the experimental
water tank, can be circumvented.

Figure 21 illustrates the results of this correlation-function
averaging procedure. The normalized autocorrelation functions of eight
pseudorandom input noisebursts, each 2.8 ms in duration, were computed

according to Eqs. (127) and (129). Figure 21 compares the average

normalized autocorrelation function pI (T), which is calculated using
Eq. (132) for I equal to 1, 2, 4, 6, 7, and 8. For the autocorrelation

functions shown, the timeshift parameter T is a continuous variable,
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although the curves are plotted from sampled autocorrelations with
At = 5 As. The spurious baseline oscillation that is seen to occur in
the range !TI > 200 Ps for the case of the single autocorrelation function
(I = 1) is gradually suppressed as more autocorrelation functions are
included in the average: this oscillation all but vanishes when there
are six terms in the average. Except for a slight narrowing of the main
lobe of the autocorrelation function and a slight reduction in the height
of the neighboring sidelobes as I increases, there is little difference
between the experimental autocorrelation function found in the I = 6 case
and the functions found in the I = 7 and I = 8 cases. Thus, it is found

experimentally that, if 2.8 ms input noisebursts are used, it will be
sufficient to average six input-output crosscorrelation functions in
order to obtain a good estimate of the spatial impulse response function
of the Type F36 source. In general, however, eight correlation functions
will be included in the average that determines this impulse response

function for each set of experimental conditions. It is not practical
to include more than eight functions in the average, since digitally
recording each input and each output noiseburst with the paper tape
perforator requires about 9.6 minutes. Consequently, in order to gather
the digital data for one input-output correlation function that is
derived from the average of eight sample functions, one requires 77
minutes just to punch the necessary output noisebursts onto paper tape.
Since many such correlations, each with different experimental parameters,
are required in order to define the line source's spatial impulse response
function in the experiments to be described, the time required to gather
the acoustic data becomes prohibitively long if too many correlation
functions are included in the average.

As final topic in this discussion of the experimental system, the
acoustic receivers used to measure the radiated field of the Type F36
source will now be described. Two measuring hydrophones of different

sizes were used. Both are commercially manufactured piezoelectric
pressure sensors [LG91. Both are cylindrically shaped and each has its
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sensitive element located near one end and encapsulated in a neoprene

sheath that is bonded to a stainless-steel mounting sleeve. The

electrical cable emerges from the other end of this sleeve on each

receiver.

The larger of the two receivers had a maximum diameter of 9.92 mm

(0.391 in) and was 55.6 mm (2.19 in) long with the neoprene sheath

comprising 28.6 mm (1.13 in) of this length. The cylindrical mounting

sleeve, 7.94 mm (0.313 in) in diameter, accounted for the remaining

26.9 mm (1.06 in) of the total length. This hydrophone has a freefield

receiving sensitivity of -209 dB re lV/iPa. This receiving sensitivity

can be considered constant to within ±0.2 dB from 10 Hz to 5 kHz and

constant to within ±2 dB from 5 kHz to 40 kHz. This receiver was used to

make directional measurements in the farfield of the Type F36 transducer

at a fixed distance from this source. A compliant mounting was used to

attach the receiver, with its axis of symmetry held vertical, to a

vertical stainless-steel rod, which held the receiver fixed in the field
of the Type F36.

The smaller of the two receivers was used to probe the field of

the Type F36. A small sensitive element in this receiver is encapsulated

in a sheath that is only 2.38 mm (0.0938 in) in diameter and 6.35 mm

(0.25 in) long. A conical stainless-steel mounting sleeve 95.5 mm

(3.75 in) long holds the sensitive element, making the overall length of

the receiver 101.6 mm (4.0 in). The sleeve tapers from a diameter of

2.38 mm at the sheath to a diameter of 6.35 mm at the cable. The

receiving sensitivity of the hydrophone is -224 dB re IV/uPa, exclusive

of the cable. This receiving sensitivity is constant to within i*0.5 dB

from 1.0 Hz to 20 kHz; above 20 kHz, it decreases linearly to approxi-

mately -225 dB at 40 kHz. Using a cable 2.44 m (8 ft) long, causes a

decrease of about 2 dB in the receiver's sensitivity.

This receiver is mounted, with its axis of symmetry horizontal

at the end of a tapered truss. The truss is 3.765 m (148 in) long and is
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made of six rods, each 3.13 mm (0.125 in) in diameter, that are welded

to a set of rings of progressively increasing diameters, each with a
square cross section that is 3.18 mm on a side. This tapered truss,
which is light, stiff and acoustically transparent, is fastened to an
assembly that is mounted on an optical-beench carrier. The receiver
position can be changed by moving the carrier along a one-meter optical

bench. The receiver-positioning apparatus is shown in Fig. 22 and also
appears in the upper right foreground in Fig. 13.

Fig. 22--Receiver-positioning apparatus

The axis of the truss can be kept vertical, when the assembly is
moved along the bench, by means of two precision spirit levels, which are
accurate to +10" and which are orthogonally mounted on the assembly that
carries the truss. A second carrier is coupled to the assembly that
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carries the truss by means of a precision lead screw. By adjusting the
lead screw and by using a vernier scale, one can position the carrier
that moves the receiver along the optical bench with an accuracy of
+0.05 mm (+0.002 in). Moreover, by accurately leveling the assembly to
maintain the truss axis vertical after the moving the receiver, one can
ensure that the motion of the receiver at the end of the truss reproduces
the motion of the optical-bench carrier to within +0.1 mm (+0.004 in),
if one assumes that the precision levels can be read to +5" and that the
distance from the receiver to the point of support for the truss structure
is 4.24 m (167 in).



CHAPTER VII

EXPERIMENTAL SPATIAL IMPULSE RESPONSE FUNCTIONS

The spatial impulse response function of the Type F36 transducer
was measured, as a function of direction, with the receiver at a fixed
distance from the center of the Type F36 source. It is this set of
experimental results, defining the source's directional characteristics,
that will be discussed in this chapter. In particular, the waveforms of
the measured spatial impulse response functions will be compared to those
waveforms that are predicted on the basis of the theoretical description
of the radiated field of an ideal line source, which was derived in
Chapter IV.

In general, the measured spatial-impulse-response-function wave-

forms agree very closely with the theoretical predictions, except for

those cases in which the source's field is measured in the direction of
its axis of symmetry, or else, is measured in directions close to axial.
However, even in these cases, the theory of the ideal line radiator
predicts the essential features of the experimental waveforms. Indeed,
the theory may be modified in a simple fashion so that it can also be
used to adequately predict the spatial-impulse-response-function wave-
forms that are measured in axial and near-axial directions. This latter
point will be discussed in what follows, along with an explanation of the

observed differences between the theoretical and the experimental wave-
forms in certain regions of the Type F36 source's radiated field.

Measurements were made at 29 different angular positions, with

the center of the measuring receiver at a constant distance of 1.324 m
(52.12 in) from the axis of the vertical tube in the supporting section

of the transducer mounting assembly. (See Fig. 12.) This separation
distance was measured with an accurate steel rule to the nearest 1.59 mm
(0.0625 in). The angular measurement positions are depicted in Fig. 23,

140
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Fig. 23--Measurement positions

in which a plane polar coordinate system is established. The origin of
this polar system, which is fixed to the Type F36 source, is located at
the center of the source. The plane depicted in Fig. 23 is the plane
HHI in Fig. 12. The polar angle 0 measures the orientation of the Type
F36 source with respect to the receiver. The orientation with 0 = 180°
is the reference position, which was established visually. In the
0 = 1800 position, the axis of symmetry of the Type F36 passes through

the measuring receiver, with the source itself between the lower structure
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of the transducer mounting assembly and the receiver. Thus, in the
diametrically opposite angular orientation of the source, that orientation
for which 0 = 3600, the lower mounting arm of the mounting assembly will

be in the acoustic field between the Type F36 and the receiver, while the

source will be broadside to the receiver in both the 0 = 900 and the
2700 positions.

Measurements were taken at 10° intervals throughout the quadrant
extending from 0 = 1800 to 0 = 270'. By symmetry, the experimental

spatial-impulse-response-function waveforms that are determined in this
quadrant will be representative of those in each of the other three
quadrants. Therefore, most of the experimental results will be discussed
in terms of the behavior of the spatial impulse response function in the
range 1800 < • < 2700. However, it was anticipated, and indeed found to

be the case, that precisely symmetrical experimental results can only be
attained with great difficulty. For this reason, additional measurements
were made in the other three quadrants. Certain of these results will be
considered when it is appropriate to do so.

The experiments used a set of eight noisebursts, each with a 2.8 ms
duration, as input signals to the Type F36. The set of eight received
noisebursts, corresponding to the set of eight transmitted noisebursts,
were recorded on paper tape at each of the 29 orientations of the Type
F36 that are depicted in Fig. 23. Thus, 232 paper-tape records of
received noisebursts were made in addition to the eight paper-tape
records that were made of both the Type F36 source's input-voltage and
input-current noisebursts. Gathering all the experimental data took
nine days of continuous work during a two-week period in May 1976.

During the course of the data taking, the temperature in the water tank
rose from l8.8 0C to 19.60C, owing to the seasonal transition. Water

temperature, which was measured both at the beginning and at the end of
each day, was found to be constant during an entire eight-hour measure-

ment period to within approximately ±0.10C. The experimental results
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to be presented are quite insensitive to temperature variations of this
magnitude.

The various angular orientations of the Type F36 source with
respect to the receiver, which are depicted in Fig. 23, are also tabulated
in Table 1, along with the water temperature that existed when received
noisebursts were recorded at each particular orientation. The values of
the soundspeed [96] that occur at the tabulated water temperatures are
also shown in the third column of Table 1. It was intended that each
measured spatial impulse response function would be determined from the
average of eight input-output crosscorrelation functions. However, eight
of the digitized records of received noisebursts were lost, some owing to
paper-tape-perforator malfunctions and some owing to problems in magnetic-
tape translation and copying operations. Therefore, the fourth column
in Table 1 gives the number of received noisebursts that could actually
be used in computing input-output crosscorrelation functions, and, hence,

also gives the number of such functions that are included in the average
that determines the waveform of the source's spatial impulse response for
a particular source and receiver configuration. It will be noted that
eight input-output crosscorrelation functions are included in most
averages and that in no case are fewer than six crosscorrelation functions
averaged when determining a spatial impulse response function. Thus, an
accurate representation of the Type F36 source's spatial-impulse-response-
function waveform can be obtained for each of the 29 orientations at
which received noisebursts were recorded.

The waveforms of the Type F36 source's spatial impulse response
function, which were measured at a number of the orientations depicted in
Fig. 23, are shown in Figs. 24 through 30. These waveforms are determined
by the means described in Chapter V, starting with the normalized input-
output crosscorrelation functions that are expressed by Eqs. (129) and
(130). In Figs. 24 through 30, the ordinate of each waveform is the
amplitude of this normalized spatial impulse response function, which
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TABLE I. -- Source and receiver orientation angles 0 at which the

spatial impulse response function of the Type F36 source was
observed. Temperature T and soundspeed c at each observation

angle. Number n of crosscorrelation functions averaged for
each orientation when obtaining the waveform of the spatial
impulse response function.

0 T c n

( 0 C) (m/s)
-~ U

0° 19.6 1481.108 8
30Q 19.6 1481.108 8
600 19.6 1481.108 7
900 19.6 1481.108 8

1200 19.6 1481.108 8
1530 19.6 1481.108 8
1700 18.9 1478.916 7
175 ° 19.9 1478.916 8

1800 18.8 1478.599 8
1850 18.8 1478.599 8
190° 18.8 1478.599 8
2000 18.9 1478.916 a
2100 18.9 1478.916 8
2200 18.9 1478.916 8
230° 18.9 1478.916 8
2400 19.3 1480.174 6
2500 19.3 1480.174 8
2600 19.3 1480.174 7
2640 19.3 1480.174 8
2660 19.4 1480.486 8
2680 19.4 1480.486 8
2700 19.4 1480.486 8
272° 19.6 1481.108 8
2740 19.6 1481.108 7
2760 19.6 1481.108 8
280a 19.6 1481.108 8
3000 19.6 1481.108 8
3200 19.6 1481.108 6
340° 19.6 1481.108 8
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Fig. 24--Experimental spatial-impulse-response-function
waveforms: 0 = 180°, 0 = 185°, and 0 = 1900

can be designated as p0. The abscissa of each waveform is the delay

parameter T, with the scale presented in units of microseconds delay with
respect to the time at which the transient-recorder digitization of the
received noiseburst began. Thus, the abscissa scales in Figs. 24 through
30 show the time interval from 600 u9 to 1350 us. The occurrence of a

given waveform feature corresponds, approximately, to the time it takes
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Fig. 25--Experimental spatial-impulse-response-function
waveforms: 0 = 200', 0 = 2100, and 0 - 30°

for an acoustic signal to travel from the source to the receiver.

'urther remarks concerning this point will be made subsequently.

In Table 2, the amplitudes of the normalized and of the absolute
spatial impulse response function are displayed for those waveforms shown
in Figs. 24 through 30. Column two of Table 2 gives p0, the amplitude
of the normalized form of the spatial impulse response function, while
P0 in column three is the amplitude of the corresponding absolute function.
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TABLE 2.--Comparative amplitudes of the fundamental initial minimum in
the observed spatial-impulse-response-function waveform for
various observation angles 0. The amplitude po pertains to
the waveform of the normalized function and PO pertains to
the waveform of the absolute function. Amplitudes of the
waveforms are given at the sampled value of T that most nearly
coincides with the position of the most negative point on
the waveform for the minimum in question. Samples of the
spatial-impulse-response-function waveform were obtained
experimentally at 5 us intervals so that the waveforms
usually attain their extrema between sample values.
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Fig. 26--Experimental spatial-impulse-response-function
waveforms: 0 = 220', 0 - 230', and 0 = 240°

The amplitude tabulated for each waveform is that amplitude occurring at
the sampled value of the delay parameter T most nearly corresponding to
the fundamental initial minimum of the waveform. This value of the delay
parameter appears in the fourth column of Table 2.

The waveforms appearing in Figs. 24 through 30 are determined by

crosscorrelating the output voltage from the measuring receiver with that
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Fig. 27--Experimental spatial-impulse-response-function
waveforms: 0 = 250°, 0 = 2600, and 0 = 270°

input voltage to the Type F36 that produced it. For this reason, PO,
the amplitude of the absolute form of the experimental spatial impulse
response function, has been given the dimensions of volts-squared in
Table 2, although it is proportional to the source's radiated acoustic
pressure. It must be emphasized again, however, that the waveforms shown

in Figs. 24 through 30 are not the waveforms of the crosscorrelation
functions of the input and output voltages of the source and receiver
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Fig. 28--Experimental spatial-impulse-response-function
waveforms: 0 = 60', 0 = 1200, and 0 = 3Q00

combination. According to the experimental methodology discussed in
Chapter V, these input-voltage/output-voltage crosseorrelation functions
must be filtered by convolving each of them with a step function in order
to obtain the waveforms of the source's spatial impulse response function
that are shown in Figs. 24 through 30. According to the analysis in
Chapter V, this filtering operation on measured input-output cross-
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Fig. 29-- Experimental spatial-impulse-response-function
waveforms: 0 = 264°, 0 = 2660, and X = 268°

correlation functions is necessary in order to remove the effect intro-
duced by the mechanical compliance of the vibrating-shell structure
within the Type F36 source. (Refer to Fig. 9.) In the equivalent-
circuit representation of the radiating source, the mechanical compliance
appears as the equivalent capacitor CM. This capacitor acts as a differ-
entiating element that causes the source's surface velocity to be
proportional to the first derivative of the voltage that is applied to the

n



152

11 4,0 320-

-¶0-

1.0-
t ¶50~

10- +5 450'
05 J_ __ ______ ___ \:___---- =

J #= 34O0

-01
-t o-

600 650 700 750 OO 850 90 950 1000 1050 1100 1150 T200 ¶250 MCI 1350

TIMESHIFT r tps)

Fig. 30--Experimental spatial-impulse-response-function
waveforms: 0 = 3201, 0 = 1500, and ' = 340°

source's electrical terminals. As a result of the radiating shell's
compliance, then, the directly measured input-voltage/output-voltage

crosseorrelation function's waveform at any angular orientation is just
the first derivative of the waveform of the source's spatial impulse

response function at that orientation. Consequently, the convolution
of a crosscorrelation function with a step function is clearly just
the integration operation that inverts the differentiation performed by
the mechanical-compliance element in the Type F36 source's electro-

mechanical network.
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The relation of the Type F36 source's spatial impulse response
function to the directly measured input-output crosscorrelation function
is shown in Fig. 31. An unfiltered normalized input-voltage/output-
voltage crosscorrelation-function waveform is shown at the top of this
figure. This is the waveform of the experimental crosscorrelation

I 0- UNFILTERED
INPUT-OUTPUT

CROSSCORRELATION

5 i *230-

O

-05
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O _ .0 ONVOL-UIION OF7 CROSSCORRELATION
WITH STEP FINCTION

052
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Fig. 31--Measured crosscorrelation function before and
after it is filtered

function, measured at the orientation for which 0 = 2300, before it is

convolved with a step function. At the bottom of Fig. 31, the normalized

spatial-impulse-response-function waveform that results from the convolu-

tion is shown. This same spatial impulse response function appears at

the center in Fig. 26. It is clear from Fig. 31 that the waveform of the

measured input-output crosscorrelation function, shown at the top of the

figure, is the first derivative of the spatial-impulse-response-function

waveform shown at the bottom. Thus, the positions along the T axis of

the positive-going and negative-going axis crossings on the lower

spatial-impulse-response-function curve coincide very nearly to the
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positions of the maxima and minima on the upper crosscorrelation-function

curve, since these axis crossings occur at very nearly the positions for
which the slope of the spatial-impulse-response-function curve is most
pronounced. Thus too, the maxima and minima in the spatial-impulse-

response-function curve, where this function's first derivative is zero,
correspond to the positions of the axis crossings on the crosseorrelation-
function curve. It is worth noting in Fig. 31 that the shape of the
waveform of the correlation function, which is the spatial impulse

response function's first derivative, is somewhat similar to the shape of
the waveform of the impulse response function itself. Such similarity of
the measured input-output crosscorrelation function to the corresponding

spatial impulse response function does not occur in general. In most
cases, the waveform of the spatial impulse response function's first
derivative is manifestly different from the waveform of the function
itself.

In this connection, it is interesting to observe that the cross-
correlation function of the input voltage and the input current to the
Type F36 is proportional to the first derivative of the autocorrelation
function of the input voltage. This relationship is a consequence of
the presence of the electrical capacitor C: in the source's equivalent
circuit that is shown in Fig. 9. Because the capacitor Co shunts the
input electrical terminals in the network that characterizes the Type F3&,
the current flowing into the Type F36, at any frequency v, is proportional
to j27rtE,(v), where EI(v) is the spectral component of the input voltage
at that frequency. Since the input current into the Type F36 is propor-
tional to the first derivative of the input voltage for constant-voltage
drive, the waveform of the first derivative of the autocorrelation
function of the input voltage (which is shown in Fig. 21) will be the
same as the waveform of the crosscorrelation function of the input current
and the input voltage. Thus, the shape of the waveform of the measured
input-voltage/input-current crosscorrelation function is not similar to
the shape of the waveform of the measured input-voltage/input voltage
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autocorrelation function. Moreover, if one wished to obtain the spatial
impulse response function of the Type F36 from the crosscorrelation
function of the received voltage and the input current to the Type F36,
he would be required to convolve the measured crosscorrelation function
with a ramp function, rather than with a step function. This would be
necessary, since the velocity of the radiating surface of the Type F36
would be proportional to the second derivative of the input current
supplied to the source under conditions of constant-voltage drive. All
of the experimental spatial impulse response functions discussed here,
however, will be determined, via convolution with a step function, from
input-voltage/received-voltage crosscorrelation functions.

The required convolution of measured input-output crosscorrelation
functions with a step function is accomplished by means of the computer.
The procedure begins with the computation of the eight input-output
normalized crosscorrelation functions that pertain to any particular
angular orientation of the Type F36 source. After these normalized cross-
correlation functions are averaged according to Eq. (132), the mean-squared
value of the resulting average crosscorrelation function is computed.
This average normalized crosscorrelation function is then written onto a
magnetic tape, which serves as the input to the convolution program.
This latter program causes each correlation-function record to be convolved
with a step function that has an arbitrarily chosen step height. Each
spatial impulse response function resulting from such a convolution has
at this stage the correct waveform, but does not yet have the correct
amplitude. In order to set the amplitude of the spatial impulse response
function, one sets its mean value to be zero and then computes its mean-
squared value. The amplitude of the computed spatial impulse response
function is then adjusted so that the function will have a mean-squared
value identical to that of the original correlation function from which
it is obtained by convolution. In other words, one, in effect, passes
each average input-output crosscorrelation function through a filter
that neither adds nor removes energy from the input signal. The mean-
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squared values of the original crosscorrelation function and of the
resulting spatial impulse response function are, of course, computed
using waveform records of the same duration in both cases.

Now that the preceeding general considerations have been properly
dealt with, one may redirect his attention to the experimental results
depicted in Figs. 24 through 30, bearing in mind that the results
observed in the quadrant for which 1800 5 0 5 2700 are largely represent-
ative of the results obtained in the other three quadrants. Between
0 = 1800 and X = 1900, as will be noted from Fig. 24, there is little

change in the waveform of the spatial impulse response function. The
waveform changes somewhat but retains this basic shape as 0 increases

further. Indeed, the waveform at 0 = 2100, which is shown at the center

of Fig, 25, is basically similar to that at 0 = 1800, except that the
secondary positive maximum, which occurs is near T = 998 as for 0 = 180l,

has moved toward the major minimum in the waveform (that minimum near
T = S52 Ss for o = 1800) so as to be near T = 962 US for 0 = 210. (The

major minimum is that minimum near T = 847 us for 0 = 210'.) This

secondary positive maximum also increases in amplitude as 0 increases
from l80' to 210'. Further, one sees from the lower curve in Fig. 25
that the waveform at 0 - 30', which is the diametrically opposite
position from the 0 = 2100 orientation, is basically like the waveform
observed at 0 2210, as is to be expected on the basis of symmetry.
The amplitudes and the positions of the corresponding secondary maxima,
with respect to the primary minima, are slightly different, however, in
the two cases.

As 0 is changed from 1800 to 2100, it is seen that the secondary

positive maximum in the waveform grows in amplitude and moves toward the

primary minimum. This representative behavior continues with increasing
0 until the waveform takes on the appearance of that depicted in the
center curve of Fig. 26, which occurs in the case when 0 = 2300. Some-
where beyond 0 = 230°, in the vicinity of 0 = 2400, a rapid transition

takes place in the waveform as the orientation of the source is changed.
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The waveform that results from the transition has attained its basic
shape when 0 = 250g. As can be seen from Fig. 27, the spatial-impulse-

response-function waveform retains this basic appearance in the range
2500 < 0 5 2700.

Owing to symmetry, the waveforms of the spatial impulse response
function observed at 0 = 600, 1200, and 3000 should all resemble one

another as well as resemble the waveform that is observed at 0 = 240°.
It can be seen from Fig. 28 that this is not the case. This dissimilarity
in waveforms is caused by a small angular misalignment in the transducer-
mounting assembly. The effect of this angular misalignment on the wave-
forms observed near 0 = 60,', 1200, 2400, and 300°, however, is greatly

magnified, since the shape of the spatial-impulse-response-function wave-
form varies rapidly in the vicinity of these angles. This point will be
discussed in more detail later on.

The experimental waveforms shown in Figs. 27 and 29 illustrate

an extremely important result. To appreciate this experimental result,
one must first recall some of the consequences of the theoretical analysis
developed in Chapter IV. In Chapter IV, it was shown that there are two
distinct regions in the acoustic field radiated by a line source of
length L. It will be remembered that, in the region outside of the two
parallel planes that pass through the ends of the line source and to
which the source is perpendicular, the source's field is comprised of
two destructively interfering components. These components are radiated
by point sources at each end of the line. (See Eq. (80b).) On the
other hand, in the region between the two parallel planes, which are
separated by the distance L, the source's radiated field is comprised of
three components. (See Eq. (80a).) In this latter region, two of the
components are radiated by point sources at the ends of the line source
and interfere constructively with each other. There also exists an
expanding cylindrical wave in this region that interferes destructively
with these two constructively interfering components. According to the

theoretical picture, when an observation point in the line source's field
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crosses either of the planes that delineate the two regions in the field,
the acoustic pressure field owing to the cylindrical wave component and
the acoustic pressure field owing to the point radiator at the end of the
line through which the plane passes, both change discontinuously. The
total pressure field, however, remains continuous as one passes from one
region in the field to another across one of the two parallel boundary
planes.

If one makes a calculation based upon the previous ideas, he finds

that, at a distance of 1.324 m from the center of a line source of length
L = 210.89 mm (8.303 in), a boundary plane separating the two regions of

the source's acoustic field is crossed when 0 = 265.430 and again when

0 =7274.57g. (Boundary planes are also crossed when 0 = 85.430 and when

0 =g94.57>.) Thus, the uppermost waveform in Fig. 29, that for which

0 = 264', was observed in a region where the source's spatial impulse
response function is comprised of only the two components that are
radiated by the ends of the Type F36 source. On the other hand, the
center and the lowermost waveforms in Fig. 29, and the lowermost wave-

form in Fig. 27, for which 0 equals 2660, 2680, and 2700, respectively,

were all observed in a region in which the Type P36 source's acoustic

field is comprised of three components--a cylindrical wave component and
components radiated by each of the source's ends. Since the waveform of
the Type F36 source's spatial impulse response function is virtually
unchanged when the observation point moves across one of the boundary
planes delineating the two field regions, one can conclude, on the basis
of the experimental results depicted in Figs. 29 and 27, that the Type P36
source's total acoustic pressure field remains continuous when the
components comprising it change discontinuously.

For completeness, Fig. 30 shows the waveforms of the spatial
impulse response function that were observed at orientations for which
0 equals 32Q', 150°, and 34Q0. Using Fig. 23 as a guide, one may compare

the waveforms depicted in Fig. 30 with those waveforms related to them by
the symmetry that is present the experimental situation.
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The spatial-impulse-response-function waveforms observed at other
angles are not illustrated because they differ insignificantly from the
waveforms that are depicted in Figs. 24 through 30. For example, plots
of the waveforms observed at the orientations for which 0 equals 1700 and
1750 were compared, respectively, to plots of the waveforms observed at
0 = 190° and at 0 = 1850. The comparison, which was made by superimposing

the plotted curves on a light table, showed the corresponding waveforms
to be virtually indistinguishable from one another. A similar comparison
of the waveforms observed at the orientations for which 0 equals 280°,
2760, 274°, and 2720 to the respective waveforms observed at 0 - 260°,

2640, 2660, and 2680 showed corresponding waveforms to be almost identical.

The observation of identical waveforms at equal angular increments on
either side of the 0 = 1800 orientation and on either side of the 0 - 2700
orientation was taken as an indication that the angular misalignment of
the transducer-mounting assembly was small.

It will now be shown that the observed spatial-impulse-response-
function waveforms for the Type F36 source, which are illustrated by
Figs. 24 through 30, are those waveforms to be expected according to the
analysis developed in Chapter IV, which describes the radiated field of
an ideal line source. Before theoretical and experimental results can
be compared, however, two questions must be dealt with, which concern

the construction of theoretical spatial-impulse-response-function wave-
forms. First, one must determine the correct value to use for L, the
length of the radiating line source that is equivalent to the actual
Type F36 source transducer. Second, one must find an adequate numerical

representation of the theoretical equations appearing in Chapter IV,
which are expressed in terms of generalized functions, so that theoretical
spatial-impulse-response-function waveforms can be constructed using the
computer. These two problems are addressed below, commencing with the

question of determining the equivalent line length of the Type F36 source.

One first notes that both Refs. [93] and [94] describe the Type

F36 transducer as having "...directivity in the vertical (KY) plane...
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equivalent to that of an 8-inch (20.3-cm) line." However, if one uses the
typical 10 kfHz directional response pattern of the Type F36 transducer for
the vertical plane, which is enclosed in both Refs. [93] and [94] and if
one assumes that this pattern was measured at a temperature of 3 0 3C (the
same temperature at which the transducer-calibration curves were obtained),
then he will calculate the value of the equivalent line length of the
Type F36 to be approximately 210 mm (8.26 in), which is greater than the
203 mm value specified for this quantity. This calculation is based upon
the expected angular positions of the nulls in the farfield directional
response pattern of a continuous line radiator of length L. (The
"vertical.. plane" referred to in Refs. [93] and [941 corresponds to the

horizontal plane HU' in the experimental arrangement here,since, in
practice, the Type F36 is usually deployed with its axis of cylindrical
symmetry vertical.) The nulls on either side of the major lobe of such
a directional response pattern will occur at the angles 0IN that satisfy
the relation

sino lN = v/ ), (133)

if the line source radiates a harmonic signal with frequency v, where c
is the soundspeed in the acoustic medium. Moreover, the problem of
determining the equivalent length L of the Type F36 is not resolved by
taking L to be 195.1 mm (7.68 in), which is the overall length of the
seven-element array of endcapped cylindrical shells that constitutes the
active portion of the Type F36 transducer. A continuous line array this
short would not produce directional response patterns like those in
Ref s. £93] and [94], nor would such a small value of L be consistent with

the observed behavior of the spatial-impulse-response-function waveforms.

Nor can one reasonably model the seven-element array within the

Type F36 transducer as a seven-element array of discrete point sources,
in order to determine L. For an N element discrete array with overall
length L', the equation analogous to Eq. (133) is
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sinOlN = ±:c(N - 1)/(NvL'). (134)

Equation (134) gives the angular positions 01 of the first nulls occurring
on either side of the major lobe in the discrete array's directional
response pattern at the frequency v. From Eqs. (133) and (134) it is seen
that an N element discrete line of length V is equivalent to a continuous
line of length

L = L'N/(N - 1) (135)

if the equivalence is made on the basis of the observed null positions in
the farfield directional response pattern of the source. The factor of
N/(N - 1) in Eq. (135) points out the fact that a line array of discrete
point radiators is equivalent to a continuous array that is longer than
the overall physical length of the discrete array. However, for N = 7,
which is the case in question, one finds on the basis of Eq. (135) that
the equivalent length L of the Type F36 array would be 200.0 mm (7.875 in)
if I' were taken equal to 171.1 mm (6.75 in), which is the center-to-
center spacing of the two outermost cylindrical shells, or else finds that
L would be 222.2 mm (8.75 in) if L' were taken equal to 190.5 mm (7.50 in),
which is the overall length of the seven-element array, exclusive of the
outermost endcaps. Neither the unreasonably short 171.1 mm value nor the
unreasonably long 222.2 mm value for the source's equivalent length L is
consistent with the observed acoustic characteristics of the Type F36
transducer.

It is clear from the preceding discussion that it is fruitless to
attempt to determine the correct value of the equivalent line length L of
the Type F36 transducer from the physical dimensions of its internal
seven-element array since, from a strictly structural standpoint, this
array is unlike either a continuous line array or a line array of point
sources. Instead, one must establish the proper value of L for the
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Type F36 source by experiment. The preceding discussion also points out
how such an experimental determination of L can be made, namely, from the

angular positions of the nulls that are present in the directional
response pattern of the Type F36 in the plane RH' at any frequency v.
Moreover, such an experimental determination of the Type F36 source's

equivalent length can be carried out completely independently of the
input-output correlation experiments that were performed using noisebursts.
Therefore, the experimental value of L, thus independently determined
from directional-response null positions, will not be prejudiced by the
correlation-experiment results. Yet once obtained, this value should be
consistent with the characteristics of the observed spatial-impulse-
response-function waveforms.

If L is the length of a line source, with its center at a distance
R from an observation point, then that observation point can be con-

sidered to be in the farfield, or Fraunhofer region, of the line source,
when the source radiates a harmonic signal with frequency v, if

R > vL Ic, (136)

where c, as before, designates the soundspeed. The criterion for the
establishment of a line source's farfield that is given by Eq. (136) is
conservative. Null-position determination in the acoustic field of the
Type F36 was made at the distance R = 1.324 m. Suppose that v is no

greater than 20 kHz and that c = 1487.443 m/s, which corresponds to the

temperature of 21.7 0 C at which the null-position measurements were made.

Moreover, when using Eq. (136), one may certainly assume that the value

of L for the Type F36 is no greater than 229 mm. (9 in>. Then with R =

1.324 m, a calculation shows that the observation point is well within
the farfield of the Type F36 at all frequencies less than 20 kEz. (One
may note that the experimental spatial impulse response functions
reported here were all measured in the farfield of the Type F36, since
the noisebursts used as input signals to the source were filtered to
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suppress the spectral components with frequencies above 20 kHz.)

In order to determine the equivalent source length L from the
angular separation of the null positions in the source's directional
response pattern, it is necessary to excite the source at each of several
harmonic frequencies and to measure the angular positions of the nulls
that are created at each of those frequencies. Again owing to the con-
fined volume of the water tank, continuous harmonic excitation of the
Type F36 cannot be used. Rather, one excites the source transducer
using gated sinusoids, each of which contains an integral number of
cycles of the harmonic frequency for which the null positions in the
directional response pattern are to be measured.

Such gated sinusoids (so-called "pulsed CW") or "tonebursts" are
created using the buffer/interface unit in the pulse-generating subsystem
of the electronic suite. (See Figs. 14 and 15.) A modification of the
timing subsystem is necessary, however, before tonebursts can be generated
with the experimental system. This modification takes advantage of the
phase-locked relation between the 5 MHz reference signal and the output
signal from the frequency synthesizer (See Fig. 18.), which was set to be
200 kHz when performing experiments with noisebursts. Using a high-speed

preset counter, one divides the 5 'MHz reference signal by 25 and produces

a train or short pulses at 5 us intervals. The output of the preset
counter is then substituted for the 200 kHz sinusoidal timing signal that
emanates from the frequency synthesizer in the situation depicted in
Fig. 18. Now, however, the 200 kHz timing pulsetrain and all other

system timing signals derived from it are produced from, and are thereby
in synchronism with, the 5 MHz reference signal from synthesizer.

The clock signal, from pulse generator PG2 in the timing subsystem
to the buffer/interface unit in the waveform-generating subsystem, is
next disconnected and a new clock pulsetrain, which is needed to control
the transmission of digital data from the memory in the buffer/interface
unit to the digital-to-analog converter, is supplied to the buffer/
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interface unit. This clock pulsetrain is generated by supplying the
synthesizer output signal to the external-synchronization input terminal
of a pulse generator. The output of this pulse generator, which is a
train of repetitive short pulses at intervals determined by the period of
the sinusoid emanating from the frequency synthesizer, is then supplied
to the clock input terminal of the buffer/interface unit. It is seen
that, by varying the synthesizer's output frequency, the rate at which
the words are transmitted from the memory of the buffer/interface to the
digital-to-analog converter may be varied. Moreover, when the synthesizer's
output frequency is varied in this way, no other timing signal in the
entire measurement system is altered, since all other system timing signals
are derived from the synthesizer's 5 MHz reference signal and not from
the synthesizer output, which controls only the word transmission to the
digital-to-analog converter. All timing signals in the entire measure-
ment system, however, remain in complete synchronism, since the output

signal from the frequency synthesizer at any arbitrary frequency is phase-
locked to the 5 MHz reference signal from that unit.

With this timing-system modification, one easily obtains the
experimental tonebursts needed for measuring the equivalent length L of

the Type F36. One simply writes a series of digital records of sinu-
soidal signals on a magnetic tape that can be input to the buffer/interface
unit. Each sinusoidal signal record is written so that it fills the
entire 4096-word memory of the buffer/interface when it is loaded. Every

digitally represented sinewave in the series is computed using a different
sampling interval, so that each record has a different number NS of

samples per cycle of the sinusoid. Thus, one generates records with
values of Ns = 8 samples/cycle, 12 samples/cycle, 16 samples/cycle, etc.
Now suppose that one sets the frequency synthesizer to produce a sinu-

soidal output signal with frequency vow Then, since this signal determines
the rate at which words are transmitted from the buffer/interface memory
to the digital-to-analog converter, the output of the digital-to-analog
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converter will be a sinusoid of frequency

V NS * (137)

Thus by properly choosing both 0 and N., the synthesizer frequency and

the digitized-sinusoid record with the proper number of samples per cycle,
an analog sinusoidal voltage at any desired frequency v can be created.

From this analog sinusoid at frequency v, a toneburst comprised
of any integral number of cycles nC is easily created. To do this one
needs only to start transmitting words from the memory of the buffer/
interface at a memory location that corresponds to an axis crossing of
the digitized sinusoid and to terminate the transmission after (nCNS + 1)
words. This can be accomplished simply by setting the thumbwheel-switch

controls of the buffer/interface.

For null-position measurements, six tonebursts having frequencies
of from 7.5 kHz to 8.0 kHz, in increments of 100 Hz, were generated by

this means. The value of nC chosen at each frequency was that which

created the longest possible toneburst having a duration less than 2.8 ms.
This frequency range was chosen so that there would be nulls in the
resulting directional response patterns for a water temperature of 21.7°C
and so that the positions of these nulls at any frequency would be
separated by a relatively large angle. Large angular separations can be
measured with greater precision than small separations, because the
precision [110] with which one can read angles using the divided dial D
(See Fig. 12.) is about 0.1. Thus, the precision with which an angular
separation Lo can be calculated from the positions of two nulls in the
source's directional response pattern is always about ±0.2', independent
of the magnitude of X, if the calculation is based on dial-reading error
alone.

Null positions in the directional response patterns of the Type
F36 were determined by observing the waveform of the received pulse that
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was produced by each of the six input tonebursts. Tonebursts were

filtered, with the same cascaded filters used in the noiseburst experi-
ments, before being input to the Type F36. An oscilloscope was used to
observe the waveform of each received toneburst. The received toneburst
was passed through a narrowband filter, with its center frequency set at
the frequency of the toneburst sinusoid, in order to minimize noise. The

amplitude of the center portion of the received toneburst was observed
and the Type F36 transducer was rotated until this observed amplitude had
a minimum value. The angle corresponding to such a null position was then
read from dial D. The oscilloscope was thus used as a null detector.

The directional response pattern of the Type F36 source in the
frequency range from 7.5 kHz to 8.0 kHz is similar to that sketched in

Fig. 32. The two nulls at the angles 01 and 02 indicated in Fig. 32 are
those measured. The value of the null-separation angle is determined as

AO 01 -02 + w * (138)

One-half the value of null-separation angle MO is given by Eq. (138) is
used in Eq. (133) to calculate the equivalent value of L at each of the
six toneburst frequencies. The value of M is determined from the
separation of the two nulls at 01 and 02, rather than as a difference

such as

M= 0i - 0 

because, in this way, the null-position measurement can be made without
placing any part of the mounting structure of the Type F36 in a region of
the source's field where it might perturb the results of the sensitive
null measurement.

At each of the six frequencies, ten measurements of 01 and ten
measurements of 0 2 were made. The results of these measurements are
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To

270'

Fig. 32--Typical directional response of the type F36
in 7.5 kHz to 8.0 kHz frequency range

summarized in Table 3. Those tabular entries that are averages determined
from ten measured values are designated by placing bars over the symbols
heading the columns of Table 3 that contain the entries in question. The
equivalent lengths L. of the Type F36, which are determined using Eq. (133)
from A0i at each of the six frequencies v9, where i is a convenient index,
appear in column six of Table 3. Since each Li is calculated as an

average that is determined from the ten measured values of N5. obtained
at each frequency v., the observed standard deviation ai of Mi at each
'i may also be calculated. This quantity appears in the seventh column
of Table 3 and will be useful later.
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It will be noted from Table 3 that a2, which corresponds to the
frequency of 7.9 kHz, is the smallest value of vi observed and that a 
increases for the measurements made at toneburst frequencies lower than
this. One expects to obtain a more precise measurement of Li at the>,
higher frequencies in the 7.5 kHz to 8.0 kHz range for two reasons. First,
for the particular angles 01 and 02 measured (Refer to Eq. (138)), the
nulls in question will be more widely separated, the higher the frequency
of the toneburst. A constant scale-reading error in determining the
angles, then, implies that a more precise measurement of Li can be obtained
as ' increases. Also, since one is observing a received toneburst in the
presence of system noise when setting the orientation of the Type F36 to
produce a null in the direction of the receiver, there is an inherent
measurement error owing to one's inability to observe the exact minimum
value in the source's directional response pattern with the oscilloscope.
This type of error also increases as the frequency decreases, because the
system noise remains approximately constant as v diminishes, while the
source level of the Type F36 decreases. Moreover, the resolution of the
null positions is further degraded as ' diminishes because the secondary
maximum between 01 and 02 becomes smaller. When this secondary maximum
becomes smaller, the magnitude of its slope in the region of a null
likewise becomes smaller and the null becomes more difficult to resolve
in the presence of system noise.

Since the six measured values of Li In Table 3 are not all of
equal precision, one determines L, the equivalent line length of the
Type F36, as the weighted mean

C- 2 6

L=L 2 +- E Lc -L2.)/a . (139)
1=1 13 

The weighting of the Li in Eq. (139) is linear and the weighting factors
are inversely proportional to CTi, so that the most precisely measured
values of Li influence the value of L to the greatest extent. Using
Eq. (139), the value of L that one determines from the Li in Table 3 is
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L = 210.89 mm (8.303 in). (140)

It is this measured value of the Type F36 source's equivalent length that
will be used in constructing the theoretical spatial-impulse-response-
function waveforms that will be compared to the experimental results.

Theoretical spatial-impulse-response waveforms are constructed,
using the computer, on the basis of Eqs. (80), which describe the field
radiated by a line source in terms of the generalized function 4(r,LL,t)
that is given by Eq. (81). It is seen that this function increases without
bound as t - to, where

2 2

The function * is zero prior to to, owing to the step-function factor in
Eq. (81>, but is not zero for t > to, i.e., a "tail" follows the singu-
larity in the generalized function jr.

A suitable approximating function that is finite everywhere must
be found to represent V in order to use the computer to calculate theo-
retical waveforms. Moreover, this finite approximating function must be
represented by a set of sample values calculated at a finite number of
discrete values of time t. Suppose this finite approximating function

is called t ~ru>AT), where AT, the time interval between sample values,
is taken to be 5 Lis, which is the same as the sample interval in the case
of the experimental spatial-impulse-response-function waveforms. Here
n is an integer. Upon examining several ways of numerically representing

the function t4 it was found that the tail, which follows the singularity
of I, has only an insignificant effect on the result obtained when some

arbitrary function is convolved with .

Subsequently it will be seen that the only important properties
of 4 are those that affect the result of a convolution of the function 4
with another function. Thus for calculating theoretical waveforms, one
may characterize the function 4 by its singularity and write
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(r,,t) e:i A(r,u)6(t - to), (142)

in which A(r,u) is the weight of the 6-function that describes singular
behavior of t at the time to that is given by Eq. (141). The function
4 numerically approximating 4 is given by the expression

(tr,u,nAT) = A(r,4)6 0(nAT - to). (143)

In Eq. (143), 6o is a sampled numerical representation of the 6-function
appearing in Eq. (142) and A represents the same quantity in both
Eqs. (142) and (143).

Two questions arise when representing the numerical function
approximating 4 by the means the quantity 4 that is given by Eq. (143).

First, what is the value of A, the weight of the 6-function, and second,
how shall 603 the finite numerical equivalent of a 6-function, be
represented? Consider the second question first, namely, the question
of representing the function 60.

The numerical 5-function 6o in Eq. (143) should assume the value

zero except when

nAT - to = , (144)

in which case, it should assume a value of unity. However, since the
sampling increment AT = 5 us is fixed and since n is an integer, it is
seen that Eq. (144) cannot be satisfied unless to is itself an integral
multiple of AT. Now the time to is determined by the experimental values
of the source's equivalent length L, by the distance R from the center
of the Type F36 to the receiver, by the angle 0 that specifies the
orientation of the source with respect to the receiver, and by the sound-
speed c. The quantity to is, in fact, the arrival time at the receiver
of a particular component in the source's radiated field. Consequently,
to is almost never an exact integral multiple of the fixed sampling
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interval AT. That is, in any experimental situation, the one non-zero

value of 6o will almost always occur at a time other than one at which a

sample is taken, i.e., it will occur between samples. Thus, the sampled
form of 60, if represented in the usual manner, will consist entirely of
zero values. Such a sampled representation of 60 is, of course, useless.

It is necessary, therefore, to find a sampled representation for
60 that assumes a value of unity between two samples and is zero else-
where. This can be accomplished numerically, by an adaptation of the

formula for five-point Lagrange interpolation [111], in the following way.
First, one finds no, which is the value of n that most nearly satisfies
Eq. (144), and also calculates the remainder h derived from it by using

the equations

no= [[to/ (145a)

and

h (t 0 /AT) - no, (145b'

In Eq. (145a), the double brackets denote "the largest integer contained
in the bracketed expression." Assuming that times are reckoned from an
initial instant that corresponds to n = 0 in Eq. (144), one calculates
five samples of 60 according to the formula

1 2Ij(h - I)hh - 2), n n - 2

1 2- (h - l)h(h - 4), n - n - 1

60(nAT - to)= 1 (h2 _1)(h 22 4), n = 

1 2

- 6 (h + 1)h(h - 4), n = n + 1

y (h - l)h(h + 2), n = n + 2

elsewhere. (146>
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The numerical 6-function expressed by Eq. (146) has the required

characteristics, for, if any sampled function that is represented as
f(nAT) is numerically convolved with 60, the result will be the time-
delayed function f(nAT - to).

By using Eq. (146), one may obtain an adequate numerical repre-

sentation for the function 60 in Eq. (143). The weight A of this
numerical 6-function is determined by noting the behavior of the original

generalized function 4 as t t0. Consider the factor

trt 2
- (r 2 U 2VC 2] 3/2 (147)

in Eq. (81) at time t = to + At, where At is very small in comparison to

t0. Neglecting quantities of the second order, one obtains from Eqs.

(141) and (147) the result that

-. (At) 3/22-3/2 to- (148)

as t - t0. The weight of the function 5o in Eq. (143) should then be

specified to be

A(r,u) = [(r2 + L2 - (149)

from which the arbitrary numerical factor, the negative three-halves

power of two, has been omitted. Since the quantity (r + u )k in

Eq. (149) is a distance (it, for example, being the distance from one of

the point radiators at an end of the line source to the receiver), one

sees that the effect of the singularity in each of the generalized

functions 4 that appears in Eqs. (80) will vary inversely as the square-

root of the range. Such behavior is characteristic of cylindrical waves.

Using Eqs. (143), (146) and (149), one can numerically represent

the theoretical spatial impulse response function that is described by

Eqs. (80). This is done by substituting the function * with appropriate
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values of its input parameters for each of the generalized functions a
appearing in Eqs. (80). The resulting numerical representation of the
source's spatial impulse response function will then be

P(r,z,nAT)= - P[2t(r,0, nAT) - t(r, 4L-z, nAT) - *(r, ½L-z, nAT)j}, (15Oa}
4T7r

for -½L • z 5 ½L and

P(r, znAr)= -sgn(z) [H(r, L-'z, n AT) - k(r, 41z, n AT)] (150b)

forl za > ½TL. One can express Eqs. (150) in terms of the experimental

coordinates R and 0 by using the transformation

r - Rsino

z = Rcos . (151>

Equations (150), however, do not yet describe the theoretical spatial-
impulse-response-function waveforms that are to be compared to the
experimental waveforms presented earlier, since one must still account
for the fact that the experiments were performed using bursts of band-
limited white noise as input signals to the Type F36.

The autocorrelation function of the input-voltage noisebursts,
which are transmitted to the Type F36 transducer by the waveform-
generation subsystem of the experimental electronic system, defines the
characteristics of the bandlimited white-noise input signal to the line
source. The waveform of this autocorrelation function of the input
voltage, in the normalized form, is, in fact, the waveform of the impulse
function that excites the source in the experiments. It is seen from the
waveforms in Fig. 21 that the input-voltage autocorrelation function has
the appearance of the output signal from a linear bandpass filter that
would have resulted from excitation of that filter by a 5-function.
Consequently, in order to construct the theoretical spatial-impulse-
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response-function waveforms that are to be compared to those obtained
experimentally, one numerically convolves the normalized autocorrelation
function of the input-voltage noisebursts with the spatial impulse
response function P described by Eqs. (150). The advantage of using the
experimental autocorrelation-function waveform in this convolution,
rather than the theoretical autocorrelation-function waveform described
by Eq. (102), is that by doing so, one includes in the theoretical wave-
forms all effects that the electronic pulse-generating subsystem has upon
the digitally generated input noisebursts.

The theoretical spatial-impulse-response-function waveforms that
will appear subsequently are all computed by means described above.
The input autocorrelation function in question is the normalized average
of the eight autocorrelation functions that can be computed using the
eight noisebursts of input voltage, which excite the Type F36 in the
experiments. The waveform of this average autocorrelation function is
shown as the lower curve in Fig. 21. The computer program used to

construct theoretical spatial-impulse-response-function waveforms obtains
this average autocorrelation function of the input voltage from a magnetic-
tape record. This record is written at the time when the experimental
input-output crosscorrelation functions are computed and it resides with
the records of these crosscorrelation functions on the same magnetic tape
that served as the input to the previously described convolution program.

The theoretical and experimental spatial-impulse-response-function
waveforms are compared in Figs. 33 through 36 at a number of different
values of the angle 0. In these figures, the theoretical waveforms are
drawn using dotted lines and the experimental waveforms are drawn using
solid lines. In order to facilitate comparisons, each theoretical wave-
form is made to coincide with the corresponding experimental waveform
at a single point. This coincident point is indicated by the bold dot
that is found near the first primary minimum in each pair of waveforms.
That is, after a theoretical waveform is computed, it is shifted along
the T axis, by introducing either a fixed time delay or time advance,
until its primary minimum coincides with the corresponding minimum in the
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experimental waveform. A three-point Lagrange interpolation formula is

used to determine the time shift necessary to make the theoretical and
experimental minima coincide. Once the two minima are coincident, the

amplitudes of all the points on the theoretical waveform are multiplied
by a constant factor. This factor is chosen so as to require that both
the theoretical and the experimental waveforms will have the same
amplitude at the single point that is marked by the bold dot. Other than

aligning one point on the theoretical and experimental waveforms in the
manner described, no other modifications are made either to the experi-

mental or to the theoretical waveforms.

The comparisons of theoretical and experimental spatial-impulse-
response-function waveforms that are depicted in Figs. 33 through 36
clearly demonstrate that the theoretical picture of the radiated field
of a finite line source, which was derived in Chapter IV, corresponds to
physical reality. Thus from Fig. 33, one sees that at both 0 = 230' and

0 = 1200, there is excellent agreement between the spatial-impulse-
response-function waveform predicted on the basis of the theory and that

actually measured. Recall from a previous discussion that the experi-
mental waveform at ; = 1200 is measured in an angular region where small

changes in 0 result in large changes in the shape of the spatial-impulse-
response-function waveform. Yet, even in such transition regions, the
theory is able to predict the experimental waveforms with great fidelity.
observe in Fig. 34 that the agreement is excellent between the theoretical

and experimental waveforms both at 0 - 2600 and at 0 = 270G. Figure 34

illustrates an important result. For 0 = 260', the radiated field of the
Type F36 consists of two destructively interfering components, each one

radiated by a pointlike source at an end of the line, while for 0 = 270',

the Type F36 source's field has three components. At 2700, the radiated

field is comprised of a cylindrical wave component that interferes
destructively with the two constructively interfering components radiated
by the ends of the line. Thus, whether the observation point is in a

region where two components comprise the Type F36 source's radiated field,
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NORMALIZED SPATIAL IMPULSE RESPONSE

p - I 
LS (D b uL* [s~~~~

I ><-40 I

m-C-
trloorn o

om 

z
-4

0-0-Cr -
a

0*

0-

-4'

a:
CD -

8-

I :

Ln-
0 :

o 3
0
o

U'-

c 

0~

07
0 

0 

6 -0

0~

00

rA
0
0

CA -
sn
0

0 0

: I s

ZrT >ca
o rtT e
aZr InM

-4

L I

0
l

re

CD

0
C

rF

0

k-6

lb 

& D

re

0'

51
0

00-

C

CD
Ox

0CD

'0 i'

U:

CLm00 .

0'
0-

N

0
0

0

0'

0

-

0C~D

0

w

-4

o

m

~n

=h 0

-4

0

0 
0 

0 

a t

00

0

CM
0
0

0



179

0 0

0 0

0 0

Nd N

00 ' 
0 0 4N

0 0
0 2~~~~~~-D

0 ~~~~~~~- 0-
0 ~~~~~~~~~~~0 N--. 0~~~ 0 02> -~~~~~~~~~~~~~~

0 04
0&

rW
-i C

0 o0 4.0'
U)01

0 0
In 0LOco ~~~~~~~~~~~~~~~~ndr.0 0~~~~~~~~~~~~~~~~~~~c I.-'
0o 0 (Un-

LO ~~ in I 00-
0 z 2c

H 0 

0 00
0 0 L

3SNOdSBU 3S'1lndiI 'lVliVdS O3ZI1VVdNON

aRcH

z z

12 Iii

o- x

-W-w
O. I 3 
W,) H: u

0 I
- ci



180

NORMALTZED SPATIAL
IMPULSE RESPONSE

cn 0 0

~ -tn

-,0 
MIn:

CT)0
U)

0:

-i:

Zr 0 -

--O I
0:

m

0~

Q0.

Ln

0-

U'0

m0~

'r WD :

0 3

0 :

0 -

U0

a'
ton

4:rp
'00

00
5rtr

HI D

(D 0

1 to
FH O

CO

ro

C rtCD O

OrrD

canO

rpMs

CI D
Ow

CD 0

00

N0
0

0

CM
00

FA
Ut
0

I

I

-3



181

or whether it is in a region where this field is comprised of three
components, the theoretical model accurately predicts the spatial-impulse-
response-function waveform that is actually observed.

On the other hand, the agreement between theoretical and experi-
mental waveforms appears at first glance to be rather poor at 0 = 170°,
if one considers the comparison made in the upper portion of Fig. 35.
Now at t = 1700, the radiated field of the Type F36 source consists of
two components. There is an impulse function with a negative-going

major peak that arrives, when T = 855 us, from the end of the line nearest
to the observation point and there is an impulse function with a positive-
going major peak that arrives, when T = 997 As, from the end of the line

most distant from the observation point. As can be seen from the theo-

retical waveform in the top part of Fig. 35, these negative-going and
positive-going impulse-function peaks are well-separated at 0 = 170°, but
the theory indicates that the two components, though of opposite sign,
should have almost the same absolute amplitude. In the experimental
waveform at the top of Fig. 35, one observes that the positive peak at

T = 997 LLS has an amplitude that is significantly smaller than that
predicted theoretically.

However, the theory can be easily modified so as to enable one
to correctly predict the shape of the experimental spatial-impulse-
response-function waveform, that is observed at 0 = 1700. To effect this
modification, one introduces a greater degree of attenuation into the
factor A(r,LX), given by Eq. (149), than that which is caused by a range

dependence proportional to the inverse one-half power of the distance.
In a normalized waveform, this greater attenuation will cause the
amplitude of the component that is radiated from the end of the line
most distant from the observation point to be more strongly diminished,
relative to the amplitude of the component radiated from the end of the
source nearest to the observation point, than is the case in the theo-
retical waveform depicted in the upper part of Fig. 35. For definiteness,

consider that A(r,k) varies, not as the inverse one-half power of the
distance, but as the inverse sixth power of the distance. A theoretical
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waveform incorporating this modified inverse-sixth-power distance
dependence is compared in the lower part of Fig. 35 to the experimental
waveform that is observed at 0 = 1700. Here good agreement is seen to
exist between the shape of the modified theoretical spatial-impulse-
response-function waveform and the experimental waveform. If one applies
the modified theory with the inverse-sixth-power distance dependence in
the case for which 0 - 2100, one obtains the comparison depicted in
Fig. 36. Again at X = 210', as was the case at 0 = 170', the waveform
predicted using the modified theory agrees closely with that observed
experimentally.

It is seen from Figs. 33 through 36 that the theoretical picture
developed in Chapter IV accurately describes the radiated field of the
Type F36 source. It is true that the theory must be modified in order to
account for the relative amplitudes of the two radiated-field components
observed in axial and near-axial directions (i.e., at and near = 1800>).
However, it is seen from Figs. 35 and 36 that the modification of the theory
is readily effected simply by attenuating the component radiated from the
end of the line most distant from the observation point by using an
inverse-sixth-power distance dependence. That is, for axial and near-
axial directions, one uses the relation

A(rl) = [2(r 2 ½+ -6 6 (152)

in place of Ea. (149).

For axial and near-axial directions of observation, then, it is
seen that the unmodified theory developed in Chapter IV, correctly pre-
dicts presence of the two components radiated by the ends of the line
source and correctly predicts their separation in time. It does not,
however, correctly predict their relative amplitudes. Consequently, an
additional attenuation factor must be introduced into the theory when
computing the shape of the waveforms observed near the - 181? direction.
Introducing this attenuation by using Eq. (152) in place of Eq. (149), is,
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of course, an arbitrary procedure, but one that is seen to yield relative
component amplitudes that are consistent with those observed. However,
if one considers the construction of the Type F36 transducer (Refer to
Fig. 10.), there appears to be a plausible explanation for the necessity
of attenuating the amplitude of the component radiated by the end of the
line most distant from the observation point in order to bring the theo-
retical and experimental results into agreement.

The seven-element array within the Type F36 is constructed using
endcapped ferroelectric cylindrical shells as acoustic radiators. The
ferroelectric shells are designed to vibrate in a circumferential mode
when excited electrically, but owing to elastic coupling, which must be
present if Poisson's ratio of the shell material is not zero, there is
also a significant longitudinal motion of the ends of each shell during
any circumferential vibration. This longitudinal motion causes each of
the endcaps to act as a vibrating circular piston. The acoustic radiation
from all such piston sources augments the field radiated by the curved
surfaces of the seven circumferentially vibrating cylindrical shells.
Effects of this radiation from endcaps will be most pronounced in the
direction of the axis of symmetry of the Type F36 [112J and will also be
significantly large in directions near the axis of symmetry. Thus, in
axial and near-axial directions, the radiation from the end of the Type
F36 nearest the observation point, owing to endcap motion, will produce
an effect greater than that produced by the nearest end of an infinites-
imally thin line with the equivalent length. That is, near 0 = 180°,
the component radiated from the end of the Type F36 nearest the receiver
will exhibit an abnormally large amplitude, since this component includes
the combined effect of both the infinitesimally-thin-line end-radiation
component and the radiation produced by the pistonlike endcap. Thus, in
order to construct theoretical waveforms that resemble the experimental
waveforms observed with the Type F36 source in axial and near-axial
directions, one is required to increase the amplitude of the component
radiated from the end of the source nearest to the receiver, or else
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equivalently, is required to reduce the amplitude of the component
radiated from the most distant end of the source so as to compensate for

the effects of the endcap radiation. Also in this connection, it might
be expected that there is an additional attenuation produced in the
component from the most distant end of the Type F36, owing to the

baffling effect of all of the transducer structure between that end of
the source and the receiver. Moreover, one suspects that the large and
plates, which hold the element-mounting rods on the Type F36, may perturb

the shape of the experimental waveforms and axial and near-axial
directions owing to the effects of diffraction and reflection.

As is seen from the preceding discussion, the discrepancies
between the experimental and the theoretical spatial-impulse-response-
function waveforms, which occur in cases of axial or near-axial
observation directions, are caused by the failure of the Type F36
transducer to model exactly an ideal line source having only an infini-
tesimal extension in the radial direction. There is also an additional
factor causing discrepancies between the experimental results and those
expected theoretically that should be considered before concluding the
discussion in this chapter. One aspect of this discrepancy, which was
mentioned earlier, is illustrated by the waveforms depicted in Fig. 28
and by that waveform in Fig. 27 for which 0 = 240G. By symmetry, one

would expect that the waveforms observed at the angles X - 60', 1200,
2400, and 3004 should all have the same shape. Noticeable differences

exist in the shapes of the experimental waveforms in question, however.
Moreover, if one examines all the results depicted in Figs. 24 through 30,

a second aspect of the discrepancy manifests itself.

It will be observed from these figures that the time of arrival

of a particular field component does not change consistently as the angle
¢ is changed. Suppose, for example, one chooses some particular feature

near the onset of the waveform observed at 0 - 180' and notes the

successive positions of this feature along the T-axis in Figs. 24 through
30 as 0 changes. Here one is assuming that the feature chosen is one

produced by the radiation emanating from one end of the Type F36.

Consequently, the time Ta at which this feature appears in the observed
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waveform should be governed by the equation

T= CD + (R2 + RLcoso + XL2)8/c, (153)

in which CD is a delay constant that depends on the characteristics of
the experimental electronic system, upon the characteristics of the
numerical convolution procedures used in processing input-output cross-
correlation functions, and upon the location of the particular feature
chosen in the waveform at 0 = 180. The other symbols in Eq. (153) have
all been defined previously. Now regardless of the value that one assigns
to CD, he finds that the observed arrival times of particular features in
the experimental waveforms, which occur due to end-radiated field components,
cannot be predicted by means of Eq. (153) as 0 is changed,

An error in positioning the Type F36, which occurred when using
the apparatus pictured in Fig. 12, accounts both for the lack of similarly
shaped experimental waveforms at symmetrical angular positions and for the
inconsistent behavior of the arrival times of waveform features as 0 is
varied. The positioning error was caused by small translations of the
vertical tube that is clamped between the collars Cl and C2 in the
supporting section of the transducer-mounting apparatus. Translational
motion of the vertical axis of rotation of the Type F36, as well as of
the transducer itself, resulted from this motion of the tube. This un-
wanted translation occurred as the tube was rotated. It was brought about
when, during rotation, the collars Cl and C2 crept along the upper and
lower surfaces of the support block instead of turning in place.

Such a translation was possible because it was necessary to clamp
the arms of the block tightly between the collars in order to hold the
tube vertical. As a consequence, a good deal of manual effort was often

needed to change X, since the weight of the movable portion of the
assembly was considerable and there was much friction between the surfaces
of the collars and of the supporting block. It was found in a preliminary
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experimental run that, when the experimenter applied the torque necessary
to change 0, irregularities in the mating surfaces of the collars and the
block arms meshed together and caused the entire assembly to pivot slightly
about the point of contact. If sufficient precautions were taken each
time 0 was changed, it was possible to keep the vertical tube pressed
against surfaces of the V-slot cut in plate Pl when the transducer-
mounting assembly was rotated and to so ensure that the axis of rotation
of the source did not move horizontally. Unfortunately, however, when the
experimental data appearing in Figs. 24 through 30 were gathered, the axis
of rotation did shift slightly during the process. Since the Type P36
underwent a translation when its axis of rotation shifted, the translational
motion in question affected both the arrival time at the receiver of the
signal from the source, and, to a lesser degree, the angular orientation
of the source axis with respect to the receiver. Translation of the axis
that occurred when the assembly was rotated clockwise, tended to be offset
by motion induced by anticlockwise rotation, because the collars tend to
creep along the support block in opposite directions when the assembly is
rotated in opposite senses. For this reason, the positioning error in
question entered the data in a random fashion, since the acoustic data
were gathered in such an order that sometimes a clockwise and sometimes

an anticlockwise rotation of the transducer-mounting assembly was required
when going from one value of 0 to another.

The fact that there is experimental error affecting the arrival
times of the observed spatial-impulse-response-function waveforms is of
little import. If these times had been obtained more accurately, the
significance of the experimental results reported here would be neither
enhanced nor diminished. On the other hand, while in one sense, it would

have been aesthetically more satisfying to have eliminated all positioning
error and thereby to have achieved identical waveforms at 0 = 60, 1201,

2400, and 3GOO, in actuality, the different waveforms, which are observed
when the symmetry of the experimental arrangement is perturbed by the
error, provide an informative picture of the behavior of the spatial
impulse response function in the transition region.
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Consider the change in the shape of the spatial-impulse-response-
function waveform that occurs in the region between 0 = 2300 (See Fig. 26)

and X = 2500 (See Fig. 27). The rapid transition takes place near 0 =

240° as the large sidelobes of the impulse function radiated from the end
of the line source most distant from the receiver interfere with similar
sidelobes that are part of the impulse function radiated from the opposite
end of the line. The central positive peak, which appears in the 0 =

2300 waveform owing to constructive interference of impulse-function
sidelobes, is diminished near X = 2400. This condition is depicted by the
0 = 300° waveform at the bottom of Fig. 28. At a slightly greater value
of 0, this central peak will disappear completely, as is shown by the
0 = 120° waveform at the center of Fig. 28. The 0 = 120° waveform marks

the transition between a waveform with three large positive peaks, like that
observed at 0 = 230', and a waveform with two such positive peaks, which

is fully developed at 0 = 2500. Thus, as 0 is increased still further, a
waveform with two positive peaks begins to develop. Such a waveform is

shown in the 0 = 600 case that is depicted at the top of Fig. 28. With a
further slight increase in 0, traces of the rapid transition occurring
near 0 = 2400, which appear as a distortion in the second positive peak

of the 0 = 600 waveform, become faint. In the actual 0 240° waveform

shown in Fig. 26, they are scarcely visible at all. After such a wave-
form as that actually observed at 0 = 2400 is obtained, a further increase
in 0 only causes the two positive peaks to change in amplitude and move
together until the spatial-impulse-response-function waveform attains the
shape it has at 0 = 2500.

It can be seen from the above description of the behavior of the
spatial impulse response function in the transition region near 0 = 240°,
that the presence of a small positioning error was in a sense fortuitious,

since it perturbed the symmetry of the experimental arrangement. Had this
perturbation not occurred, the nature of the rapidly changing shape of the
spatial-impulse-response-function waveform in the transition region could
not have been so readily understood. One should not retain the impression,
however, that the transducer-orientation angles 0 cannot be determined
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precisely if sufficient care is exercised, nor should one believe that
the basic alignment of the transducer mounting system was in error.

Recall that, in the region near 0 = 180', the experimental waveforms
obtained at equal angles on either side of the 0 = 1800 position were

virtually identical and that this was also the case in the region near
0 = 270'. Moreover, if one examines the results of the null-measurement
experiments that determined L, an estimate of the error inherent in the
determination of the angle X can be obtained.

Consider the measured angular null positions 01 and 02 appearing
in Table 3. Referring to Fig. 32, one sees that the angles 01 and 02
should be symmetrically disposed about the 0 = 1B0' transducer orienta-
tion at all frequencies. Consequently, at any frequency, the difference
between 0AV, which is the average value of 01 and 02 and 1800 measures

the alignment error inherent in the transducer-mounting system. Using the
most precisely measured values of 0l and 02, those for i = 2 obtained

using the 7.9 kHz tonebursts, one calculates that 0AV = 179.830. This

value indicates that the alignment was less than 0.20 in error in the
anticlockwise direction. (That is, the divided dial used to measure the

angles X would have to be rotated 0.170 in the anticlockwise direction
in order to make its 1800 mark coincide with the actual midpoint between
the null positions.) If, on the other hand, the least precisely measured
values of Oj and X, are used, those for i = 6 obtained using the 7.5 kHz

tonebursts, one calculates that 0AV = 179.540. This value indicates the

possibility of an alignment error of 0.460, with the error again occurring

in the anticlockwise direction. Most likely, the systematic error in
determining 0 is closer to 0.17' than it is to 0.460, since, for the
reasons examined previously, one would expect that the null measurements
obtained with 7.9 kHz tonebursts would be more accurate than those
obtained with 7.5 kHz tonebursts. However, even if one used the value of
0.460, which is obtained from the least accurate experimental measurement,

the systematic error he would expect in 0 would be quite small. Thus, one

can see that in the experimental determination of the equivalent line
length of the Type F36, the full potential of the measuring system for

obtaining an accurate value of 0 was realized.
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[106] The 48-bit per word machine described in Ref. [971 was used for
generating pseudorandom numbers.

[1071 Paper tape to magnetic tape translation was performed on a CDC 160
computer, which is ancillary to the CDC 3800 machine. The
necessary machine-language loader and execution routines were
written by Mr. R. D. McCulloch of the Research Computation Centers

[108] Ref. [913, pp. 192-195. The formulas appearing in this reference
do not explicitly describe the variance of crosscorrelation
functions in the case of sampled transient signal records. However,
the experimental situation approximates the conditions of Bendat
and Piersoll's example 5.3 sufficiently closely to infer that the
variance in the experimental correlation functions is inversely
proportional to the duration of the noisebursts correlated. That
is, this variance is inversely proportional to the number of
samples comprising the noisebursts. It might also be mentioned
here that experimental correlation functions were computed with
the noisebursts treated both as transient signals in the manner
described in the text, and as finite-duration samples of infinite
records. In this latter case, lagged-product formulas were used
to estimate the correlation functions. Except at very large values
of the lag parameter, there were only insignificant differences
between the results obtained for experimental correlation functions
with the two different estimation techniques.

[1091 Both hydrophones used in the experiments were manufactured by the
Atlantic Research Corporation. The larger of the two is designated
as Model LC-10 while the smaller is Model LC-5. While this
manufacturer no longer fabricates these transducers, they are
still commercially available from KSP Industries, Inc., as Models
VT-102 and VT-106-2, respectively.
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[110) There is no vernier scale associated with the divided dial D, so
that it is only after some practice that an experimenter attains
the ability to read the dial to the nearest 0.1.

[111] Ref. [87], p. 879, Eq. 25.2.15.

[112] It is likely that radiation from the endcaps between the vibrating
cylindrical shells augments the field radiated by the curved
surfaces of the shells in such a way that the radiated field near
the seven-element array is smoothed out. That is, endcap
radiation provides an acoustic field between pairs of radiating
shells and causes the seven disjoint cylindrical shells to radiate
more like a continuous line array than like a line array of discrete
elements.



APPENDIX I--DIFFERENTIATION OF A SINGULAR FUNCTION

Singular functions of the form

F(t) = u(t - a 2 _2 (11)

with u the unit step function and with a constant, are to be differen-
tiated with respect to the variable t. In the following discussion, let
the derivative of any function with respect to t be denoted by a prime

superscript. The derivative F'(t) of the function F(t) given by Eq. (1.1)
is obtained in two steps. First, the definition of the generalized
derivative is applied to F(t). It is next shown that the resultant
expression is identical to the expression obtained for the singular
generalized function that is defined by the Hadamard finite part [II, 12]
of a certain divergent integral. The generalized function defined by the

Hadamard finite part is, therefore, the derivative F'(t) that is sought.

The generalized function f(t) is defined on the real axis
-< c t < w by means of inner products with testing functions r(t):

< f, 4 >= ] f(t){(t) dt . (1.2)

The testing functions 4 constitute a space D. Each testing function is
defined on the real axis -- < t< - , but vanishes outside a finite
interval, a S t S b, which can be different for each different function 4.
Moreover, it is required that the testing functions possess derivatives
of all orders. Testing functions are thus continuous. It is to be noted
that in order for Eq. (I.2) to define a generalized function f, it is
necessary that f(t) be a locally integrable function (i.e., a function
integrable in the Lebesgue sense over every finite interval), for only

then does the integral in Eq. (1.2) converge.

From Eq. (I.2), the properties of t, and an integration by parts,

it follows directly that the generalized derivative of the function f
can be found using the relationship

200
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<c ft 4 > < - C f, 4' > f(t)4'(t) dt (I.3)
-CO

Using Eq. (1.3), one can write the derivative of F. given by Eq. (1.1), as

B drt/t

< F, *r > - lim f dt, (I.4)
E-o+ a+e (t - a)

where B is some value so large that both 4'(t) and 4'(t) equal zero for
t X B. Integrating Eq. (I.4) by parts, yields the expression

C F', * > =_ lim[J 2 2 3/2 dt 22 .5)-OC+J a-+G (t - a ) (2ae + c)

In deriving the result expressed by Eq. (I.5), one uses the fact that

lim l(a + e) = 4(a)
e-OF

since 4' is continuous at a,

Now consider the singular function

G(t) = - u(t - 2 232.6)

Since the integral

I = C G, >=f t t(t) dt (1.7)Ia (192 2)3/2 d 17

does not, in general, converge for all testing functions 4 in D, the
expression G(t) is not that of a generalized function. Hadamard [II)
devised a method whereby a finite part of such divergent integrals as
that in Eq. (1.7) could be extracted. This finite part can in turn be
used to define a singular generalized function. Consider the integral
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in Eq. (I.7) expressed in the following form

I_-lim 2 2t(t 3/-2 dt I8e-b+ (t _! ( )

in which B is taken to be so large that *(t) = 0 for t Ž B. Let

t(t) = i(a) + (t ) (a2)41t) . (1.9>

Since *(t) possesses derivatives of all orders, it can be shown (I21 that
the function C(t) is continuous for t j a and can be extended so as to be
continuous at t = a. Using Eq. (I.9), one can transform Eq. (I.8) into
the expression

B

I= - lim t R(t) dt
e-O+Lfa+e (t - ao)

- 2 2- + i (2.10)(B -a) 2 (2ca+ C)½
The factor *(a)/(B 2 _ )2 within the brackets of Eq. (I.10) remains finite
as e-O+. Also it can be shown in the following way that the integral

2 2½dfJadC (tz _ 02)

likewise remains finite as c-rj+. For, since T(t> is continuous at t = a,
one can expand the continuous function tg(t) in the integrand of
this expression in a Taylor series about that point. The Taylor series
is to be written with a finite number of terms in powers of (t - a) plus
a remainder term. This series is then integrated, from t - a + c to
t B, term by term. The lowest power of (t - a) that will appear under
an integral is (t - a) . The integral involving this term will
converge when c-i+, as will all the integrals involving higher powers
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of (t - a) and that containing the remainder term. The only factor within
the brackets on the right-hand side of Eq. (I.10) that diverges, then, as

2½kC-0+ is t(a)/(2ca + e ) . The Hadamard finite part of the divergent
integral I, given by Eq. (I.8), is obtained by simply discarding this

divergent term. Designating the Hadamard finite part of Hfp[ ], one
obtains the expression

Hfp[I] = - lim dt t2
- 2 - ( 2 ½ (I.ll)

C-O+ C'C (t -CY) (B -a 

If Eq. (I.9) is solved for C and the result substituted into Eq. (I.11),
then

Ja ( t -t) J

- lim [ JrB
C-O+ L l+ Ec (t2- a2)

W (eaL. 1
2 21(B - a ) i

= - lim [ 2 2 3/2 dt - 2L1 (I.12)
c-.0+L fCe (t -_a ) (2ect + e)

Zemanian [12] shows that the Hadamard finite part of divergent
integrals define singular generalized functions called, following
L. Schwartz, pseudofunctions. One thus writes, for the generalized
function defined by Eq. (I.12), the expression

C Psf[-u(t - a)t/(t 2 a 2)3/2 >

[J'B ( 2 2 3/2 dt-2
C-O+[ J~re (t- a2) (2ca + e (I 13)

where a pseudofunction is designated Psf[ ]. However, if Eq. (1.13) is

compared to Eq. (I.5), one immediately sees that



204

F'(t) = Psf U(t - a)t (1.14)
1 t2 _C23/2i-

Thus, the derivative of the function F, specified in Eq. (I.1), is
given by Eq. (I.14).
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APPENDIX II- - INFORMATION ON INSTRUMENTATION

In this appendix, instruments used in the experimental measure-
ment system are identified and, if necessary, briefly described.

Consider first the instruments in the pulse-generating subsystem
depicted in Fig. 15. The tape transport is a seven-track synchronous
unit, manufactured by Digi-Data Corporation (Model 1700). The digital-
to-analog converter is an Analogic Model AN580 system using, what its

manufacturer calls, a transient-free converter unit. The buffer/interface
unit is not a generally available commercial item, but was procured on

contract from Quad Systems, Inc., (QSI) of Rockville, Maryland in 1975.

This company also supplied the system engineering effort necessary to
interface the tape transport and the digital-to-analog converter with
the buffer/interface unit. The entire integrated system, comprised of
the tape transport, the digital-to-analog converter, and the buffer/
interface unit, which also includes a Digi-Data NRZI formatter and an
Electronic Memories and Magnetics Corporation semiconductor memory system,

is designated by QSI as their Model 122. Although the digital-to-analog

converter used can only accept 12-bit words at a maximum rate of one
word every 5 15s, the buffer/interface unit itself can transmit 16-bit

words at I 4s intervals, so that the integrated system is potentially
usable with a faster digital-to-analog converter.

At the output of the digital-to-analog converter, is a Krohn-Hite
Model 3202R dual filter, which is followed by a Krohn-Hite Model 310OR

bandpass filter. The voltage amplifier is a Scientific Atlanta Series
1116 preamplifier with an adjustable gain setting. This amplifier
supplies the input signal to a Krohn-fite Model DC50A power amplifier.
The power amplifier's output current is measured using a Tektronix
Type 134 current-probe unit with a P6019 probe; for measurement, the

amplifier's output voltage is attenuated by a factor of ten using a
Tektronix P6006 probe.

206
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Next consider the instrumentation in the receiver subsystem that
is depicted in Fig. 16. The measuring hydrophone signal is supplied to
a Scientific Atlanta Model 1116 voltage amplifier, operating with a
balanced input. This amplifier's output is supplied to a Scientific
Atlanta Model 1112B receiver signal gate. The gated signal is then
supplied to a Krohn-Hite model 3100R filter.

In the waveform-recording subsystem depicted in Fig. 17, the
transient recorder is a Biomation Model 8100. In the present application,
an important feature of this instrument, aside from its large digital
memory capacity, is its digitally derived timebase. The paper-tape
perforator is a Data Specialties, Inc., PER820 unit. The interface unit,
coupling the transient recorder to the tape perforator, is a Model B305
data coupler manufactured by Datacap, Inc., of Chicago, Illinois. The
tape formatter is also manufactured by Datacap (Model 2000), but was
obtained on contract and is not a standard commercial item. The inter-
face unit not only controls the transmission of digital data between the
transient recorder and the tape perforator but also translates this data
into ASCII code, so that it can be read on a Teletype module, if necessary.

Consider now the timing subsystem depicted in Fig. 18. Here the
frequency synthesizer is a Hewlett-Packard Model 3302B unit incorporating
a 5 MHz crystal in a temperature-stabilized oven. Each of the four

digital delay generators is a Tektronix DDSO1 unit. The DD501 unit,
designated as D* in Fig. 18, was modified to operate as a pulse generator
with a digitally controlled pulselength, in accordance with a suggestion
made by the Tektronix, Inc., engineering staff. An internally mounted
switch allows one to operate this unit in either the modified mode or in
a normal fashion. Both pulse generators PG1 and PG2, shown in Fig. 18,

are also manufactured by Tektronix, Inc., the former is their Model
PG505, the latter, their Model PG501.

It should also be mentioned that all electronic instrumentation
is housed in three specially constructed equipment racks. The 60 Hz

power is supplied to each rack through a pair of radio-frequency-
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interference filters housed in a steel enclosure in the lower part of
the rack. System power to all three racks is supplied from a single
source, which was also specially built for this purpose. This source
incorporated a Sorgel 7.5 kVA isolation transformer. The primary of
this transformer is connected to the lines delivering one phase of the
60 Hz three-phase power that is supplied to the laboratory area. This
single-phase input power, however, is supplied to the transformer
primary through a pair of 100 A radio-frequency-interference filters,
which were salvaged from a radar transmitter. The equipment racks are

connected to three of four individually fused AC receptacles, which are
wired in parallel to the secondary of the isolation transformer. For
safety, the equipment racks and the case of the isolation transformer
are grounded to a common bus bar within the power source, which is
connected to the ground wire of the power cable that enters the source.

The power supply system described above is an important factor
in attaining a measuring system that is largely free of the spurious
electrical signals that usually plague the investigator who does
acoustic experimentation in a water tank. The precautions taken, not
only prevent unwanted transient signals from entering the measuring
electronics through the system's power network, but also help to prevent
any electrical transients generated by the system's electronic
apparatus from being transmitted everywhere else in the measurement
system. Use of such an isolated, filtered power system, also seems

to make it much less difficult to eliminate troublesome ground-loop and
crosstalk problems in the measuring system when they arise.


